在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。相信許多人會覺得范文很難寫?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧
因式分解法解一元二次方程教學(xué)反思十篇一
1、找出a,b,c的相應(yīng)的數(shù)值。
2、驗(yàn)判別式是否大于等于0。
3、當(dāng)判別式的數(shù)值符合條件,可以利用公式求根、學(xué)生第一次接觸求根公式,學(xué)生可以說非常陌生,由于過高估計(jì)學(xué)生的能力,結(jié)果出現(xiàn)錯誤較多。
其實(shí)在做題過程中檢驗(yàn)一下判別式這一步單獨(dú)提出來做并不麻煩,直接用公式求值也要進(jìn)行,提前做這一步在到求根公式時可以把數(shù)值直接代入、在今后的教學(xué)中注意詳略得當(dāng),不該省的地方一定不能省,力求達(dá)到更好的教學(xué)效果。
本節(jié)課第一個例題,我在引導(dǎo)解決此題之后,總結(jié)了利用求根公式解一元二次方程的一般步驟,不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。
例2、3是例1的變式與提高,通過變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問題的能力提高,這是這節(jié)課中的一大亮點(diǎn),在講完例題的基礎(chǔ)上,將更多的時間留給學(xué)生,這樣學(xué)生感覺到成功的機(jī)會增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時學(xué)生在學(xué)習(xí)中相互交流,相互學(xué)習(xí),共同提高。
課堂上多給學(xué)生展示的機(jī)會,讓學(xué)生走上講臺,向同學(xué)們展示自己的聰明才智??傊ㄟ^各種激勵的教學(xué)手段,幫助學(xué)生形成積極的學(xué)習(xí)態(tài)度,課堂收效大。
需要改進(jìn)的方面,由于怕完不成任務(wù),教師講的還是多了些,以后應(yīng)最大限度的發(fā)揮學(xué)生的主體作用。
因式分解法解一元二次方程教學(xué)反思十篇二
首先因?yàn)閷W(xué)生在開始已經(jīng)學(xué)習(xí)了用直接開平方法和因式分解法解一元二次方程,因此通過大屏幕展示學(xué)生比較感興趣的籬笆問題引入,從而引出本節(jié)課的內(nèi)容,在學(xué)生掌握的過程中,選取不同類型的方程讓學(xué)生用配方法解,以達(dá)到鞏固的目的,最后為了進(jìn)一步拓展提升,出現(xiàn)了二次項(xiàng)系數(shù)不是一的方程,讓學(xué)生學(xué)會用類比的方法解決問題。
我認(rèn)為本節(jié)課自己在實(shí)施學(xué)生主體參與方面做到比較成功:
1、鞏固舊知對學(xué)生來說是非常重要的,尤其是初三年級的學(xué)生大部分已經(jīng)有了厭學(xué)的情緒,或是怕自己跟不上,產(chǎn)生消極的心里,通過復(fù)習(xí)舊知,可喚起他們學(xué)習(xí)的積極性,大面積提高課堂效率。
2、從生活實(shí)例中引入新課,是數(shù)學(xué)課程標(biāo)準(zhǔn)的要求,學(xué)生們學(xué)習(xí)數(shù)學(xué)的目的就是為了應(yīng)用數(shù)學(xué)知識解決實(shí)際問題,對他們感興趣的話題他們就會愈學(xué)愈帶勁,這樣更能提高學(xué)困生的學(xué)習(xí)積極性。
3、初三數(shù)學(xué)又得體現(xiàn)分次優(yōu)化,因此,在本節(jié)課的重點(diǎn)教學(xué)時,我備課翻閱了近幾年的中考題,選擇了一些比較典型的習(xí)題讓同學(xué)們來做,并讓他們在小組內(nèi)充分的交流,以達(dá)到提高全體學(xué)生學(xué)習(xí)積極性的目的。
教學(xué)中還有許多需要改進(jìn)的地方:
1、本節(jié)課中有些能夠讓學(xué)生口答的地方應(yīng)節(jié)省出時間讓學(xué)生做大量的類型題,以提高優(yōu)生的能力。
2、課堂小結(jié)的權(quán)利也應(yīng)交給學(xué)生來總結(jié),以提高學(xué)生的主體參與能力。
3、題目的難易度沒有掌握好,根本上解決不了好學(xué)生吃不飽,跟隊(duì)生吃不了的問題。
4、課堂容量不大,節(jié)奏比較緩慢。應(yīng)該是大容量,快節(jié)奏,高效率。
因式分解法解一元二次方程教學(xué)反思十篇三
一元二次方程是整個初中階段所有方程的核心。它與二次函數(shù)有密切的聯(lián)系,在以后將應(yīng)用于解分式方程、無理方程及有關(guān)應(yīng)用性問題中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的基礎(chǔ)上,因此我采取讓學(xué)生帶著問題自學(xué)課本,尋找因式分解法解一元二次方程的形式特征,即等號右邊必須為零,左邊必須為兩個一次因式的乘積(不能是加減運(yùn)算),利用零的特性,將求一元二次方程的解,通過因式分解法,轉(zhuǎn)化為求兩個一元一次方程的解,將未知領(lǐng)域轉(zhuǎn)化為已知領(lǐng)域,滲透了化歸數(shù)學(xué)思想,讓班上中等偏下學(xué)生先上黑板解題,將暴露出來的問題,在全班及時糾正。本節(jié)課較好地完成了教學(xué)目標(biāo),同時還培養(yǎng)了學(xué)生看書自學(xué)的能力,取得較好的教學(xué)效果。
老師提示:
1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;
2.關(guān)鍵是熟練掌握因式分解的知識;
3.理論依舊是“如果兩個因式的積等于零,那么至少有一個因式等于零.
因式分解法解一元二次方程教學(xué)反思十篇四
1、直接開平方法應(yīng)用簡單,但受形式限制;開平方的時候要注意正負(fù)。
2、配方法較麻煩,用公式法更方便,故一般不采用。但配方法是一種較重要的數(shù)學(xué)方法,公式法就是由它推導(dǎo)出來的,而且在后面的函數(shù)中還要用到配方法,所以要掌握好。它的重要性,不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),到高中學(xué)習(xí)二次曲線時還將經(jīng)常用到。配方的時候,要注意二次項(xiàng)系數(shù)應(yīng)先化為1,再把常數(shù)項(xiàng)移到式子的右邊,然后把方程兩邊都加上一次項(xiàng)系數(shù)一半的平方;左邊就變成了一個平方的形式,再運(yùn)用直接開平方的方法求出方程的解。
3、公式法是一元二次方程的基本解法,對所有的一元二次方程都適用;用公式法的時候要先把方程變?yōu)橐话阈问?,在求出方程的判別式,最后用公式求出方程的解。
4、因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三項(xiàng)式都能很方便地進(jìn)行因式分解。應(yīng)用時要注意,等號的右邊一定要為0,然后再把方程的左邊進(jìn)行因式分解,將方程左邊分解成兩個一次因式的乘積的形式,令每個因式分別為零,得到兩個一元一次方程,解每個方程就求出了原方程的解。
1、先觀察能否用直接開平方法,能用就優(yōu)先采用;
2、再觀察能否用因式分解法;
3、用公式法。
因式分解法解一元二次方程教學(xué)反思十篇五
1、找出a,b,c的相應(yīng)的數(shù)值
2、驗(yàn)判別式是否大于等于0
3、當(dāng)判別式的數(shù)值符合條件,可以利用公式求根、
2、求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯很多、
本節(jié)課第一個例題,我在引導(dǎo)解決此題之后,總結(jié)了利用求根公式解一元二次方程的一般步驟,不僅關(guān)注結(jié)果更關(guān)注過程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。
例2、3是例1的變式與提高,通過變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問題的能力提高,這是這節(jié)課中的一大亮點(diǎn),在講完例題的基礎(chǔ)上,將更多的時間留給學(xué)生,這樣學(xué)生感覺到成功的機(jī)會增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時學(xué)生在學(xué)習(xí)中相互交流,相互學(xué)習(xí),共同提高。
課堂上多給學(xué)生展示的機(jī)會,讓學(xué)生走上講臺,向同學(xué)們展示自己的聰明才智??傊ㄟ^各種激勵的教學(xué)手段,幫助學(xué)生形成積極的學(xué)習(xí)態(tài)度,課堂收效大。
需要改進(jìn)的方面,由于怕完不成任務(wù),教師講的還是多了些,以后應(yīng)最大限度的發(fā)揮學(xué)生的主體作用。
因式分解法解一元二次方程教學(xué)反思十篇六
本節(jié)共分3課時,第一課時引導(dǎo)學(xué)生通過轉(zhuǎn)化得到解一元二次方程的配方法,第二課時利用配方法解數(shù)字系數(shù)的一般一元二次方程,第3課時通過實(shí)際問題的解決,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的意識和能力,同時又進(jìn)一步訓(xùn)練用配方法解題的技能。
在利用添項(xiàng)來使等式左邊配成一個完全平方公式時,等式的右邊忘了加。
在開平方這一步驟中,學(xué)生要么只有正、沒有負(fù)的,要么右邊忘了開方。
當(dāng)一元二次方程有二次項(xiàng)的系數(shù)不為1時,在添項(xiàng)這一步驟時,沒有將系數(shù)化為1,就直接加上一次項(xiàng)系數(shù)一半的平方。
因此,要糾正以上錯誤,必須讓學(xué)生多做練習(xí)、上臺表演、當(dāng)場講評,才能熟練掌握。
通過本節(jié)課的教學(xué),使我真正認(rèn)識到了自己課堂教學(xué)的成功與失敗。對我今后課堂教學(xué)有了一定引領(lǐng)方向有了很大的幫助。下面我就談?wù)勛约簩@節(jié)課的反思。
本節(jié)課的重點(diǎn)主要有以下3點(diǎn):
1.找出a,b,c的相應(yīng)的數(shù)值
2.驗(yàn)判別式是否大于等于
3.當(dāng)判別式的數(shù)值符合條件,可以利用公式求根.
在講解過程中,我沒讓學(xué)生進(jìn)行(1)(2)步就直接用公式求根,第一次接觸求根公式,學(xué)生可以說非常陌生,由于過高估計(jì)學(xué)生的能力,結(jié)果出現(xiàn)錯誤較多。
1. a,b,c的符號問題出錯,在方程中學(xué)生往往在找某個項(xiàng)的系數(shù)時總是丟掉前面的符號。
2. 求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯很多。
3、板書不太理想。板書可以說在課堂教學(xué)也起關(guān)鍵作用,它可以幫學(xué)生溫習(xí)本課的內(nèi)容,而我許多本該板書的內(nèi)容全部反映在大屏幕上,在繼續(xù)講一下個內(nèi)容時,這些內(nèi)容也就不會再出現(xiàn),只給學(xué)生瞬間的停留,這樣做也有欠妥當(dāng)。
4、本節(jié)課沒有激情,學(xué)習(xí)的積極性調(diào)動不起來,對學(xué)生地鼓勵性的語言過于少,可以說幾乎沒有。
教學(xué)時可以讓學(xué)生先各自求解,然后進(jìn)行交流并對學(xué)生的方法與課本上對小穎、小明、小亮的方法進(jìn)行比較與評析,發(fā)現(xiàn)分解因式是解某些一元二次方程較為簡便的方法。利用分解因式法解題時。很多同學(xué)在解題時易犯的錯誤是進(jìn)行了非同解變形,結(jié)果丟掉一根,對此教學(xué)時只能結(jié)合具體方程予以說明,另外,本節(jié)課學(xué)生易忽略一點(diǎn)是“或”與“且”的區(qū)別,應(yīng)做些說明。
對于學(xué)有余力的學(xué)生可以介紹十字相乘法,它對二次三項(xiàng)式分解因式簡便。
通過以上的反思,我將在以后的教學(xué)中對自己存在的優(yōu)點(diǎn)我會繼續(xù)保持,針對不足我將會不斷地改進(jìn),使自己的課堂教學(xué)逐步走上一個新的臺階。
因式分解法解一元二次方程教學(xué)反思十篇七
1.直接開平方法應(yīng)用簡單,但受形式限制;開平方的時候要注意正負(fù)。
2.配方法較麻煩,用公式法更方便,故一般不采用。但配方法是一種較重要的數(shù)學(xué)方法,公式法就是由它推導(dǎo)出來的,而且在后面的函數(shù)中還要用到配方法,所以要掌握好。它的重要性,不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),到高中學(xué)習(xí)二次曲線時還將經(jīng)常用到。配方的時候,要注意二次項(xiàng)系數(shù)應(yīng)先化為1,再把常數(shù)項(xiàng)移到式子的右邊,然后把方程兩邊都加上一次項(xiàng)系數(shù)一半的平方;左邊就變成了一個平方的形式,再運(yùn)用直接開平方的方法求出方程的解。
3.公式法是一元二次方程的基本解法,對所有的一元二次方程都適用;用公式法的時候要先把方程變?yōu)橐话阈问?,在求出方程的判別式,最后用公式求出方程的解。
4.因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三項(xiàng)式都能很方便地進(jìn)行因式分解。應(yīng)用時要注意,等號的右邊一定要為0,然后再把方程的左邊進(jìn)行因式分解,將方程左邊分解成兩個一次因式的乘積的形式,令每個因式分別為零,得到兩個一元一次方程,解每個方程就求出了原方程的解。
1.先觀察能否用直接開平方法,能用就優(yōu)先采用;
2.再觀察能否用因式分解法;
3.用公式法。
注意:一般不采用配方法。
因式分解法解一元二次方程教學(xué)反思十篇八
一、這節(jié)課基本是按“1:1有效教學(xué)模式”來進(jìn)行的;在時間方面,這節(jié)課保證了學(xué)生有足夠的時間進(jìn)行練習(xí)。自從我觀摩了西南大學(xué)附屬中學(xué)的翻轉(zhuǎn)課堂以來,從這里面得到了一個道理:只有放心徹底把時間還給學(xué)生,學(xué)生的自主能動性才能得到充分的發(fā)展。因?yàn)閷W(xué)習(xí)始終是學(xué)生自主的行為,如果學(xué)生的自主性得不到發(fā)展,學(xué)生一直是被動地學(xué)習(xí),他們不積極,老師在課堂上很累。但在這節(jié)課中重點(diǎn)是學(xué)生練習(xí),總結(jié)方法和規(guī)律;很多東西雖然掌握的層次不同,但都是他們真正掌握的知識。
二、課時內(nèi)容中對用配方法解一元二次方程的一般步驟總結(jié)的比較到位,學(xué)生在解題時,ppt上的例題解題過程都會保留在屏幕上,所以可以很好地對照,使他們感覺解決這樣的問題是很容易的。從二次項(xiàng)系數(shù)是1的類型過度到二次項(xiàng)系數(shù)是2的方程求解,運(yùn)用矛盾激發(fā)學(xué)生思考遇到二次項(xiàng)系數(shù)是2的方程要先將二次項(xiàng)系數(shù)化1 。
但是通過這節(jié)課,我也發(fā)現(xiàn)了我在課堂教學(xué)中的一切不足,例如,面對學(xué)生,我的教學(xué)語言中存在很多問題,題目設(shè)計(jì)不但要精,還要具有針對性,讓學(xué)生不做無用功,而又要把所有的知識點(diǎn)通過題目深刻理解。
一節(jié)課或幾節(jié)課或許對我的教學(xué)沒有多大的幫助,但是只要我能夠在教學(xué)中不斷的摸索,不斷地尋找不足,改進(jìn)不足,我相信一切都會不斷變好的。感恩!
因式分解法解一元二次方程教學(xué)反思十篇九
已學(xué)的一元一次方程、二元一次方程,歸納、總結(jié)出一元二次方程,讓學(xué)生充分感受知識的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)之中,使新概念的得出汪覺得意外,讓學(xué)生跳一跳就可以摘到桃子。
在教學(xué)中,忠實(shí)于教材,要研究的基礎(chǔ)上使用教材。教學(xué)方法合理化,不拘于形式,通過一系列的活動來展開教學(xué),了展了學(xué)生的思維能力,增強(qiáng)了學(xué)生思考的習(xí)慣,增強(qiáng)了學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題的能力。
培養(yǎng)學(xué)生獨(dú)立思考的能力,重視知識和產(chǎn)生過程,關(guān)注人的發(fā)展。無論是教學(xué)環(huán)節(jié)設(shè)計(jì),還是作業(yè)的布置上,我注意分層次教學(xué),讓每一個學(xué)生都得到不同的發(fā)展。
我在活動中在膽的讓學(xué)生自主完成,先讓學(xué)生把問題提出來,然后讓學(xué)生帶著問題去討論,這樣學(xué)生在討論時就有目的,就會事半功倍。也讓不同層次的學(xué)生得到不同的了展。也符合新課程的教學(xué)理念。
不足之處:引入方面有待加強(qiáng),還不足以激發(fā)學(xué)生的學(xué)習(xí)興趣;板書還有待加強(qiáng),應(yīng)給學(xué)生做出示范;給學(xué)生思考的時間還不夠,有的學(xué)生還有新的想法,應(yīng)讓引導(dǎo)學(xué)生說完整。
因式分解法解一元二次方程教學(xué)反思十篇十
通過本節(jié)課的教學(xué),使我真正認(rèn)識到了自己課堂教學(xué)的成功與失敗。下面我就談?wù)勛约簩@節(jié)課的反思。這節(jié)課是一元二次方程解法的復(fù)習(xí)課,復(fù)習(xí)的思路是概念的梳理(方法的回憶)__實(shí)踐(方法的選擇)__應(yīng)用(方法的融合)。由于課前我做了精心準(zhǔn)備,所以整個課堂流暢、緊湊容量大。整節(jié)課充滿著”自主、合作、探究,交流“的教學(xué)理念,使學(xué)生在主動思考探究的過程中自然的獲得新的知識。
需要改進(jìn)的方面:
1、設(shè)計(jì)的問題太多,學(xué)生在課堂上沒有辦法消化。
2、學(xué)生的積極性沒有調(diào)動起來。
通過本節(jié)課的教學(xué),我覺得課堂就應(yīng)該交給學(xué)生,而不是一味的填鴨式灌輸給學(xué)生,這樣反而達(dá)不到預(yù)期的效果。