在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類(lèi)范文都很熟悉吧。相信許多人會(huì)覺(jué)得范文很難寫(xiě)?這里我整理了一些優(yōu)秀的范文,希望對(duì)大家有所幫助,下面我們就來(lái)了解一下吧。
《一元二次方程解法》教學(xué)反思簡(jiǎn)短 一元二次方程的解法課后反思篇一
本節(jié)共分3課時(shí),第一課時(shí)引導(dǎo)學(xué)生通過(guò)轉(zhuǎn)化得到解一元二次方程的配方法,第二課時(shí)利用配方法解數(shù)字系數(shù)的一般一元二次方程,第3課時(shí)通過(guò)實(shí)際問(wèn)題的解決,培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的意識(shí)和能力,同時(shí)又進(jìn)一步訓(xùn)練用配方法解題的技能。
在教學(xué)中最關(guān)鍵的是讓學(xué)生掌握配方,配方的對(duì)象是含有未知數(shù)的二次三項(xiàng)式,其理論依據(jù)是完全平方式,配方的方法是通過(guò)添項(xiàng):加上一次項(xiàng)系數(shù)一半的平方構(gòu)成完全平方式,對(duì)學(xué)生來(lái)說(shuō),要理解和掌握它,確實(shí)感到困難,因此在教學(xué)過(guò)程中及課后批改中發(fā)現(xiàn)學(xué)生出現(xiàn)以下幾個(gè)問(wèn)題:
在利用添項(xiàng)來(lái)使等式左邊配成一個(gè)完全平方公式時(shí),等式的右邊忘了加。
在開(kāi)平方這一步驟中,學(xué)生要么只有正、沒(méi)有負(fù)的,要么右邊忘了開(kāi)方。
當(dāng)一元二次方程有二次項(xiàng)的系數(shù)不為1時(shí),在添項(xiàng)這一步驟時(shí),沒(méi)有將系數(shù)化為1,就直接加上一次項(xiàng)系數(shù)一半的平方。
因此,要糾正以上錯(cuò)誤,必須讓學(xué)生多做練習(xí)、上臺(tái)表演、當(dāng)場(chǎng)講評(píng),才能熟練掌握。
通過(guò)本節(jié)課的教學(xué),使我真正認(rèn)識(shí)到了自己課堂教學(xué)的成功與失敗。對(duì)我今后課堂教學(xué)有了一定引領(lǐng)方向有了很大的幫助。下面我就談?wù)勛约簩?duì)這節(jié)課的反思。
本節(jié)課的重點(diǎn)主要有以下3點(diǎn):
1.找出a,b,c的相應(yīng)的數(shù)值
2.驗(yàn)判別式是否大于等于
3.當(dāng)判別式的數(shù)值符合條件,可以利用公式求根.
在講解過(guò)程中,我沒(méi)讓學(xué)生進(jìn)行(1)(2)步就直接用公式求根,第一次接觸求根公式,學(xué)生可以說(shuō)非常陌生,由于過(guò)高估計(jì)學(xué)生的能力,結(jié)果出現(xiàn)錯(cuò)誤較多。
1. a,b,c的符號(hào)問(wèn)題出錯(cuò),在方程中學(xué)生往往在找某個(gè)項(xiàng)的系數(shù)時(shí)總是丟掉前面的符號(hào)。
2. 求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯(cuò)很多。
其實(shí)在做題過(guò)程中檢驗(yàn)一下判別式著一步單獨(dú)挑出來(lái)做并不麻煩,直接用公式求值也要進(jìn)行,提前做著一步在到求根公式時(shí)可以把數(shù)值直接代入.在今后的教學(xué)中注意詳略得當(dāng),不該省的地方一定不能省,力求收到更好的教學(xué)效果
3、板書(shū)不太理想。板書(shū)可以說(shuō)在課堂教學(xué)也起關(guān)鍵作用,它可以幫學(xué)生溫習(xí)本課的內(nèi)容,而我許多本該板書(shū)的內(nèi)容全部反映在大屏幕上,在繼續(xù)講一下個(gè)內(nèi)容時(shí),這些內(nèi)容也就不會(huì)再出現(xiàn),只給學(xué)生瞬間的停留,這樣做也有欠妥當(dāng)。
4、本節(jié)課沒(méi)有激情,學(xué)習(xí)的積極性調(diào)動(dòng)不起來(lái),對(duì)學(xué)生地鼓勵(lì)性的語(yǔ)言過(guò)于少,可以說(shuō)幾乎沒(méi)有。
教學(xué)時(shí)可以讓學(xué)生先各自求解,然后進(jìn)行交流并對(duì)學(xué)生的方法與課本上對(duì)小穎、小明、小亮的方法進(jìn)行比較與評(píng)析,發(fā)現(xiàn)分解因式是解某些一元二次方程較為簡(jiǎn)便的方法。利用分解因式法解題時(shí)。很多同學(xué)在解題時(shí)易犯的錯(cuò)誤是進(jìn)行了非同解變形,結(jié)果丟掉一根,對(duì)此教學(xué)時(shí)只能結(jié)合具體方程予以說(shuō)明,另外,本節(jié)課學(xué)生易忽略一點(diǎn)是“或”與“且”的區(qū)別,應(yīng)做些說(shuō)明。
對(duì)于學(xué)有余力的學(xué)生可以介紹十字相乘法,它對(duì)二次三項(xiàng)式分解因式簡(jiǎn)便。
通過(guò)以上的反思,我將在以后的教學(xué)中對(duì)自己存在的優(yōu)點(diǎn)我會(huì)繼續(xù)保持,針對(duì)不足我將會(huì)不斷地改進(jìn),使自己的課堂教學(xué)逐步走上一個(gè)新的臺(tái)階。
《一元二次方程解法》教學(xué)反思簡(jiǎn)短 一元二次方程的解法課后反思篇二
利用求根公式解一元二次方程的一般步驟:
1、找出a,b,c的相應(yīng)的數(shù)值
2、驗(yàn)判別式是否大于等于0
3、當(dāng)判別式的數(shù)值符合條件,可以利用公式求根、
學(xué)生第一次接觸求根公式,學(xué)生可以說(shuō)非常陌生,由于過(guò)高估計(jì)學(xué)生的能力,結(jié)果出現(xiàn)錯(cuò)誤較多、
1、a,b,c的符號(hào)問(wèn)題出錯(cuò),在方程中學(xué)生往往在找某個(gè)項(xiàng)的系數(shù)時(shí)總是丟掉前面的符號(hào)
2、求根公式本身就很難,形式復(fù)雜,代入數(shù)值后出錯(cuò)很多、
其實(shí)在做題過(guò)程中檢驗(yàn)一下判別式這一步單獨(dú)提出來(lái)做并不麻煩,直接用公式求值也要進(jìn)行,提前做這一步在到求根公式時(shí)可以把數(shù)值直接代入、在今后的教學(xué)中注意詳略得當(dāng),不該省的地方一定不能省,力求達(dá)到更好的教學(xué)效果、
通過(guò)本節(jié)課的教學(xué),總體感覺(jué)調(diào)動(dòng)了學(xué)生的積極性,能夠充分發(fā)揮學(xué)生的主體作用,激發(fā)了學(xué)生思維的火花,具體有以下幾個(gè)特點(diǎn):
本節(jié)課第一個(gè)例題,我在引導(dǎo)解決此題之后,總結(jié)了利用求根公式解一元二次方程的一般步驟,不僅關(guān)注結(jié)果更關(guān)注過(guò)程,讓學(xué)生養(yǎng)成良好的解題習(xí)慣。
例2、3是例1的變式與提高,通過(guò)變式訓(xùn)練,讓學(xué)生由淺入深,由易到難,也讓學(xué)生解決問(wèn)題的能力提高,這是這節(jié)課中的一大亮點(diǎn),在講完例題的基礎(chǔ)上,將更多的時(shí)間留給學(xué)生,這樣學(xué)生感覺(jué)到成功的機(jī)會(huì)增加,從而有一種積極的學(xué)習(xí)態(tài)度,同時(shí)學(xué)生在學(xué)習(xí)中相互交流,相互學(xué)習(xí),共同提高。
課堂上多給學(xué)生展示的機(jī)會(huì),讓學(xué)生走上講臺(tái),向同學(xué)們展示自己的聰明才智。總之通過(guò)各種激勵(lì)的教學(xué)手段,幫助學(xué)生形成積極的學(xué)習(xí)態(tài)度,課堂收效大。
需要改進(jìn)的方面,由于怕完不成任務(wù),教師講的還是多了些,以后應(yīng)最大限度的發(fā)揮學(xué)生的主體作用。
《一元二次方程解法》教學(xué)反思簡(jiǎn)短 一元二次方程的解法課后反思篇三
1.直接開(kāi)平方法應(yīng)用簡(jiǎn)單,但受形式限制;開(kāi)平方的時(shí)候要注意正負(fù)。
2.配方法較麻煩,用公式法更方便,故一般不采用。但配方法是一種較重要的數(shù)學(xué)方法,公式法就是由它推導(dǎo)出來(lái)的,而且在后面的函數(shù)中還要用到配方法,所以要掌握好。它的重要性,不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),到高中學(xué)習(xí)二次曲線(xiàn)時(shí)還將經(jīng)常用到。配方的時(shí)候,要注意二次項(xiàng)系數(shù)應(yīng)先化為1,再把常數(shù)項(xiàng)移到式子的右邊,然后把方程兩邊都加上一次項(xiàng)系數(shù)一半的平方;左邊就變成了一個(gè)平方的形式,再運(yùn)用直接開(kāi)平方的方法求出方程的解。
3.公式法是一元二次方程的基本解法,對(duì)所有的一元二次方程都適用;用公式法的時(shí)候要先把方程變?yōu)橐话阈问?,在求出方程的判別式,最后用公式求出方程的解。
4.因式分解法使用方便,是解一元二次方程最常用的方法,但不是所有的二次三項(xiàng)式都能很方便地進(jìn)行因式分解。應(yīng)用時(shí)要注意,等號(hào)的右邊一定要為0,然后再把方程的左邊進(jìn)行因式分解,將方程左邊分解成兩個(gè)一次因式的乘積的形式,令每個(gè)因式分別為零,得到兩個(gè)一元一次方程,解每個(gè)方程就求出了原方程的解。
1.先觀(guān)察能否用直接開(kāi)平方法,能用就優(yōu)先采用;
2.再觀(guān)察能否用因式分解法;
3.用公式法。
注意:一般不采用配方法。
《一元二次方程解法》教學(xué)反思簡(jiǎn)短 一元二次方程的解法課后反思篇四
1、找出a,b,c的相應(yīng)的數(shù)值;
2、驗(yàn)判別式是否大于或等于0;
3、當(dāng)判別式的數(shù)值大于或等于0時(shí),可以利用公式求根,若判別式的數(shù)值小于0,就判別此方程無(wú)實(shí)數(shù)解。
在講解過(guò)程中,我要求學(xué)生先進(jìn)行1、2步,然后再用公式求根。因?yàn)閷W(xué)生第一次接觸求根公式,求根公式本身就很難,學(xué)生可以說(shuō)非常陌生,如果不先進(jìn)行1、2步,結(jié)果很容易出錯(cuò)。首先,對(duì)于一些粗心的同學(xué)來(lái)說(shuō),a,b,c的符號(hào)就容易出問(wèn)題,也就是在找某個(gè)項(xiàng)的系數(shù)或常數(shù)項(xiàng)時(shí)總是丟掉前面的符號(hào)。其次,一無(wú)二次方程的求根公式形式復(fù)雜,直接代入數(shù)值后求根出錯(cuò)一定很多。但有少數(shù)心急的同學(xué),他們總是嫌麻煩,省掉1、2步,直接用公式求根。
一是學(xué)生沒(méi)體會(huì)這樣做的好處,其實(shí)在做題過(guò)程中檢驗(yàn)一下判別式非常必要,同時(shí)也簡(jiǎn)化了判別式的值,給下面的運(yùn)算帶來(lái)方便。這樣做并不麻煩,而直接用公式求值也要進(jìn)行這兩步。
二是學(xué)生剛學(xué)習(xí)公式法,例題比較簡(jiǎn)單,對(duì)于簡(jiǎn)單的題,這樣做還可以,但一旦養(yǎng)成習(xí)慣,遇到復(fù)雜的習(xí)題就不好辦了。
三是部分學(xué)生老是想圖省事,沒(méi)學(xué)會(huì)走,就想跑,想一口吃個(gè)大胖子。
在今后的教學(xué)中,還要加強(qiáng)對(duì)新知識(shí)學(xué)習(xí)過(guò)程中格式和步驟的要求,并且對(duì)習(xí)慣不好的同學(xué)要進(jìn)行耐心細(xì)致的講解,讓他們認(rèn)識(shí)到這樣做的弊端,掌握正確的學(xué)習(xí)方法,提高正確率。