又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當前位置:網(wǎng)站首頁 >> 作文 >> 最新直線和圓的位置關系教學反思和總結(jié)(七篇)

最新直線和圓的位置關系教學反思和總結(jié)(七篇)

格式:DOC 上傳日期:2024-07-13 23:43:24
最新直線和圓的位置關系教學反思和總結(jié)(七篇)
時間:2024-07-13 23:43:24     小編:zdfb

總結(jié)是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統(tǒng)的、本質(zhì)的理性認識上來,讓我們一起認真地寫一份總結(jié)吧。相信許多人會覺得總結(jié)很難寫?那么下面我就給大家講一講總結(jié)怎么寫才比較好,我們一起來看一看吧。

直線和圓的位置關系教學反思和總結(jié)篇一

本節(jié)課,我先讓學生在課前自行完成教學案中“課前預習與導學”這一部分,情況良好。上課后先信息反饋進行評講,然后引導學生回憶了點與圓的位置關系及如何用數(shù)量關系來判斷點與圓的位置關系。接著以《海上日出》圖創(chuàng)設情景,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關系,給出定義,聯(lián)系實際,由學生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由小“練習”進行應用,最后通過“例題”“課堂檢測”去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1、在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉(zhuǎn)化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

2、新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在小練習之后我及時地進行總結(jié)歸納方法,讓學生在以后解決實際問題過程中能一下子找到切入點,培養(yǎng)學生解決實際問題的能力。

同時,我也感覺到本節(jié)課的教學有不妥之處,主要有以下三點:

1、學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。講得過多,學生被動的接受,思考得不夠,對概念的理解不是很深刻。可以改為讓學生類比點與圓的位置關系下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、對于我們學生的情況,初三的教學始終沒有擺脫灌輸式教學,盡管課上也讓學生自主操作、思考,但老師講的太多,沒有給予學生足夠的探索、交流的時間,勢必會影響到部分學生的思維,限制了學生的發(fā)展。所以,我們也要學會該“放手時就放手”,大膽地讓學生去思考,也許會有意外的收獲。

3、對教材的把握,對學生的實情,在備課時都要考慮。在選題時不僅要照顧到基礎薄弱的同學,也要照顧到基礎好些的同學,適時選做。對于有些題可以適當?shù)剡M行變式訓練,拓展靈活運用,活躍學生的思維。

總之,在今后的數(shù)學教學中還有很多需要我學習和掌握的東西,希望能和學生們一起共同進步,真正成為一名合格的數(shù)學教師。

直線和圓的位置關系教學反思和總結(jié)篇二

“思之不慎,行而失當”,“學然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自強也。”反思意識人類早就有之。作為教師,在教學中也應適時反思教學過程的得與失。

在《直線和圓的位置關系》一課教學后,感受頗多,現(xiàn)分享如下:

開課時,借助微機展示“圓圓的落日慢慢從海平面升起”的動畫,從而展現(xiàn)直線與圓的位置關系。由此引入課題——直線與圓的位置關系,學生比較感興趣,充分感受生活中的數(shù)學知識,體驗數(shù)學來源于生活。然后提出問題,引導學生大膽猜想,思考,發(fā)現(xiàn)三種位置關系,激發(fā)學生學習興趣,營造探索問題的氛圍。同時讓學生從生活中“找”數(shù)學,“想”數(shù)學,體會到數(shù)學知識無處不在,應用數(shù)學無處不有。這也符合“數(shù)學教學應從生活經(jīng)驗出發(fā)”的新課程標準要求。

在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生用類比的方法來研究直線與圓的位置關系,在研究過程中,采用小組討論的方法,給予學生足夠的探索、交流的時間,培養(yǎng)學生互助、協(xié)作的精神,讓學生在相互討論中,集思廣益,形成思維互補,從而使概念更清楚,結(jié)論更準確。 最后由學生小結(jié)這一知識點,我板書在黑板上,培養(yǎng)學生用數(shù)學語言歸納問題的能力,同時感受收獲知識的快樂。

在新知教授完畢,知識升華這塊,我安排了一道實際問題,一輛火車的噪首會不會影向處在與鐵路相交的另一條公路旁的學校?如果會影響,影響的時間有多長?新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,由于此題要學生回到生活中去運用數(shù)學知識解決生活中遇到的問題,學生的積極性高漲,都急著討論解決方案,使乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

一堂課教學下來,也發(fā)現(xiàn)有諸多不妥之處,讓我認識到自己需要繼續(xù)努力。歸納主要有以下三點:

1、教師在課堂應當以引導者的身份出現(xiàn),把課堂和講臺讓位于學生,讓“教師的教”真正服務于“學生的學”,而我在這一節(jié)課中因為一方面擔心學生在自主研究知識的形成時會浪費時間,另一方面擔心會產(chǎn)生意想不到的或者課前備課時沒有考慮到的回答,總是把自己的思想強加給學生,比如學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生只是被動的接受,這樣就會對概念的理解不是很深刻。這里可以改為讓學生自己下定義,教師適當放手,以師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、有些課堂提問欠合理化、科學化,提問隨意性大,缺乏針對性和啟發(fā)性,導致課堂教學引導不力,問題缺乏精心安排這就使得課堂存在著不少“徒勞的提問”。讓課堂時間分配的不太合理。今后應該把一些提問設計再提煉,能達到精而準。

3、在處理課后練習時,做的不夠細致,這一環(huán)節(jié)是對前面探究新知識是否掌握的一個小測試,重在幫助學生掌握方法,而我在講解練習時,只展示了解題思路,并沒有及時進行方法上的總結(jié),致使部分學生在解決實際問題時思路不明確。這里教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識,充分體現(xiàn)”授人以魚不如授人以漁"。

總之,這是我對自己本節(jié)課的一些教學反思,或者說是對新課程理念的淺薄認識。

直線和圓的位置關系教學反思和總結(jié)篇三

《直線與圓的位置關系》是人教版九年級(下)第三章第一節(jié)的內(nèi)容,它和點與圓的位置關系、圓與圓的位置關系同是研究圖形之間位置關系的重要內(nèi)容。下面談談自己的做法和體會:

“直線與圓的位置關系”是由公共點的個數(shù)來定義的。定義的教學是在教師引導下,通過學生觀察、思考、交流、概括等探究活動親身經(jīng)歷概念的形成過程,形成新知識的建構(gòu)。首先引導學生回憶點和圓的位置關系及判定方法,通過對已有研究方法的揭示,增強學生運用遷移方法研究新問題的意識。接著,借助多媒體引導學生觀察并思考:在不同的位置關系下,直線和圓的公共點的個數(shù)有什么不同?從而引導學生揭示出直線與圓的位置關系與公共點的個數(shù)之間存在著對應關系的本質(zhì)特征。到此,我并沒有急于給出定義,而是進一步引導學生在定義的形成上下工夫,又提出兩個問題:一是直線與圓有三個或三個以上公共點嗎?二是通過剛才的研究,你認為直線和圓的位置關系可分為幾種類型呢?分類的標準是什么?定義的教學不只是以直接感知教材為出發(fā)點,而是力圖還原定義的形成過程,這樣既加深了學生對定義本身的理解,又提高學生對定義形成過程中所涉及的思想、方法的認識。而多媒體課件在這里的作用主要是通過“直線動圓不動”“圓動直線不動”“圓心直線不動半徑變”三種運動方式的演示,有效創(chuàng)設符合教學內(nèi)容的情景,把知識的形成過程直觀化,提高學生的興趣,增強學生的參與性。

本課內(nèi)容的第二個知識點是運用圓心到直線的距離與半徑的大小關系來判定直線與圓的位置關系,并反過來得到直線與圓的位置關系下所具有的數(shù)量特征。難點是如何引導學生去發(fā)現(xiàn)隱含在圖形中的這兩個數(shù)量并加以比較,為此,我設計了一個問題串,以問題為導向,以探究問題的方式引導學生自學自悟,為學生提供了自主合作探究的舞臺,閃現(xiàn)了學生思維創(chuàng)新的火花。

引導1:通過剛才的研究我們知道,利用公共點的個數(shù)可以判定直線與圓的位置關系,請同學想一想,能否像判定點與圓的位置關系那樣,通過數(shù)量關系來判定直線與圓的位置關系?

引導2:點與圓的位置關系的判定運用了哪兩個數(shù)量之間的關系?直線與圓的位置關系中可以出現(xiàn)哪兩個量呢?

引導3:如何用圖形來反映半徑和圓心到直線的距離這兩個量呢?

引導4:如何由數(shù)量關系并結(jié)合圖形判定相應的位置關系呢?

引導5:運用數(shù)量關系判定直線與圓的位置關系以及點與圓的位置關系,這兩者之間有何區(qū)別與聯(lián)系?

引導6:以上三個判定反過來成立嗎?

通過以上問題,學生不僅加深了對判定直線與圓的位置關系的方法的理解,更重要的是使學生學會運用聯(lián)想、化歸、數(shù)形結(jié)合等思想方法去研究問題,這無疑促進學生在學會數(shù)學的過程中順利地向“會學”的方向發(fā)展。而多媒體課件在這里的作用在于把“形”和“數(shù)” 的關系及其變化動態(tài)呈現(xiàn)在屏幕上,成為學生探索驗證的好幫手。

教學設計應為學生自主學習,實現(xiàn)知識的建構(gòu)服務。這節(jié)課為學生提供了大量問題情境、活動方式,使學生通過“做一做”“想一想”“練一練”“議一議”充分地實踐與探索,不斷地歸納與總結(jié),引導學生發(fā)現(xiàn)規(guī)律、拓展思路。而多媒體的介入,為學生實現(xiàn)“意義建構(gòu)”創(chuàng)設了更為逼真的“情景”,改善了認知環(huán)境,有利于提高課堂效率,有利于學生思維和技能的訓練。如“議一議”:(1)已知⊙o半徑為4cm,直線l上的點a滿足oa=4cm,能否判定直線l和⊙o相切?為什么?

(2)已知⊙o半徑為4cm,直線l上的點a滿足oa=5cm,能否判定直線l和⊙o相離?為什么?

此題重在強調(diào)判定方法中圓心到直線的距離,利用多媒體演示,更直觀地說明:(1)中當oa不是圓心到直線的距離時,直線l和⊙o相交;當oa是圓心到直線距離時,直線l是⊙o相切。(2)方法同(1),通過此題練習提高了學生思維的深刻性和批判性。

某個數(shù)學知識的教學可以在短期內(nèi)完成,數(shù)學技能也可通過強化訓練形成,而掌握學習的規(guī)律是一個長期漸進的過程,我認為教師在教學過程中應增強揭示規(guī)律的意識,引導學生從學習、研究的過程加以提煉,通過日積月累產(chǎn)生認識的飛躍。因此,在回顧與反思中,我組織學生以小組交流的形式討論以下問題:一是通過剛才的學習,你對如何研究圖形之間的位置關系有什么收獲和體會?二是“點與圓的位置關系”與“直線與圓的位置關系” 有哪些聯(lián)系?通過比較你有何啟發(fā)?這一設計的做法雖小,作用卻大,它使學生的認識上升到一個新的高度。也確保了學生在學會數(shù)學的過程中順利地向“會學”的方向發(fā)展。

課后作業(yè)的設計不僅要達到鞏固知識的目的,更重要的是有研究性和探索性。本節(jié)的課后作業(yè)有一道探究價值的題目:在rt△abc 中,∠c=rt∠,ac=8cm,bc=6cm,若要以c為圓心,r為半徑畫圓,請根據(jù)下列條件,求半徑r的值或取值范圍。 1、ab與圓相離 2、ab與圓相交 3、ab與圓相切。

學生需通過動手動腦來完成,使學生的探索精神由課內(nèi)延伸到課外。多媒體課件的作用在于通過圓的半徑的動態(tài)變化,為學生研究直線與圓的位置關系提供思路和分類方法。

總之,通過這節(jié)課的教學,力圖達到以下三個目標:一是知識目標,就是使學生理解概念,掌握性質(zhì)和判定并能夠利用它們分析問題和解決問題;二是能力目標,培養(yǎng)學生運用遷移、聯(lián)想、類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法發(fā)現(xiàn)問題解決問題的能力和創(chuàng)新能力;三是情感目標,通過學生的主動參與,在學會數(shù)學的過程中向“會學”的方向發(fā)展,培養(yǎng)運動、變化、發(fā)展的辨證唯物主義觀點。

直線和圓的位置關系教學反思和總結(jié)篇四

本節(jié)內(nèi)容是直線與圓的位置關系的第二節(jié)課。需要一個課時。

(1)在教學中,組織學生自主觀察、猜想、

并深刻剖析直線是圓的切線的判定條件和直線與圓相切的性質(zhì);對重要的結(jié)論及時

(2)在教學中,以“觀察——猜想——證明——剖析——應用——歸納”為主線,開展在教師組織下,以學生為主體,活動式教學。

今 后再教學本節(jié)課,應刪去未能落實的教學設計,如繁雜的證明,多重視展示后進生的思維活動,有效地幫助他們形成良好的思維品質(zhì)。另外,應加強對學生新建的知 識結(jié)構(gòu)進行有效的跟蹤、檢測、調(diào)查與反饋,加強與學生交流,幫助他們扎實構(gòu)建完整的知識體系,幫助他們養(yǎng)成觀察、猜想、分析、探索、語言表達等思維習慣, 使學生在獲得知識的同時,進一步培養(yǎng)相關的思維能力和素質(zhì).

新課程理念及新基礎教育理念都提倡“把課堂還給學生,讓課堂充滿生命活力”, 讓學生真正“動起來”,動不應當是表面的、外在的,而應當使學生的思維處于活躍狀態(tài),積極思考問題,這種內(nèi)在的、深層的動,更要落實,動靜結(jié)合,收放適 度,動得有序,動而不亂。課堂教學要的不是熱鬧場面,而是對問題的深入研究和思考。首先要設計好問題,針對不同意見和問題引導學生展開討論、辯論,抓住學 生發(fā)言中的問題,及時給以矯正。當教師提出問題讓學生探索時,學生自己尋找答案時,要放手讓學生活動,但要避免學生興奮過度或活動過量。今后再教學本節(jié)課 仍應倡導提高學生的問題意識,以對問題的探究來構(gòu)筑本節(jié)課教學的主題。但是,教師待學生的問題提完后,與學生一道對問題進行歸類,找出學生思維和知識的核 心問題,以此組織課堂教學,并相機解決其他問題。仍應放權給學生,給他們想、做、說的機會,讓他們討論、質(zhì)疑、交流,圍繞某一個問題展開辯論。教師應當給 學生時間和權利,讓學生充分進行思考,給學生充分表達自己思維的機會。但是,應關注學生的參與程度,有的學生的參與只是一種表面上的行為參與。要看學生的 思維是否活躍,關鍵是學生所回答的問題、提出的問題,是否建立在一定的思維層次上,是否會引起其他學生的積極思考,還是學生的自我需要。也就是說我們要關 注學生思維的狀態(tài)與學習互動的狀態(tài)。

直線和圓的位置關系教學反思和總結(jié)篇五

這是我第一次進入初三進行教學,即緊張又興奮。經(jīng)過一個學期的歷練,在校領導和組內(nèi)老教師的無私幫助下我有了一些進步?,F(xiàn)以《直線和圓的位置關系》第一課時為例,反思如下。

在初三的教學過程中,我?guī)缀跏锹犚还?jié)上一節(jié)。而集體備課也給了我很大的幫助。通過集體備課和聽課,在《直線和圓的位置關系》這節(jié)課中,我首先引導學生回憶了點與圓的位置關系及所對應的點到圓心的距離與圓半徑的數(shù)量關系。從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關系,給出定義,聯(lián)系實際,由學生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1、在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉(zhuǎn)化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

2、新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在做一做之后我安排了兩道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”“公路邊的學校會不會受到噪聲的影響?”培養(yǎng)學生解決實際問題的能力。由于這兩題要學生回到生活中去運用數(shù)學,學生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。講得過多,學生被動的接受,思考得不夠,對概念的理解不是很深刻??梢愿臑樽寣W生類比點與圓的位置關系下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2、雖然我在設計本節(jié)課時是體現(xiàn)讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數(shù)量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。

3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結(jié),致使部分學生在解決實際問題時思路不明確。并在進行下面的解題時體現(xiàn)出來。教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,不能想當然,否則會影響學生對知識的消化吸收。

總之,在今后的數(shù)學教學中還有很多需要我學習和掌握的東西,希望能和學生們一起共同進步,真正成為一名合格的數(shù)學教師。

直線和圓的位置關系教學反思和總結(jié)篇六

這節(jié)課,我由生活中的情景——日落引入,讓學生發(fā)現(xiàn)地平線和太陽位置關系的變化,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關系,給出定義,聯(lián)系實際,由學生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。通過本節(jié)課的教學,我認為成功之處有以下幾點:

1。由日落引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現(xiàn)象,體驗到數(shù)學來源于實踐。對生活中的數(shù)學問題發(fā)生好奇,這是學生最容易接受的學習數(shù)學的好方法。新課標下的數(shù)學教學的基本特點之一就是密切關注數(shù)學與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學,“想”數(shù)學,讓學生真正感受到數(shù)學無處不在,無時不有。

2。在探索直線和圓位置關系所對應的數(shù)量關系時,讓學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉(zhuǎn)化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

3。新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數(shù)學,學生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

擴展資料:《直線和圓的位置關系》教學反思

“國培計劃”初中數(shù)學——陳曉峰(江西省寧都五中)

《直線和圓的位置關系》教學反思

節(jié)課的教學,我認為成功之處有以下幾點:

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現(xiàn)象,體驗到數(shù)學來源于實踐。對生活中的數(shù)學問題發(fā)生好奇,這是學生最容易接受的學習數(shù)學的好方法。新課標下的數(shù)學教學的基本特點之一就是密切關注數(shù)學與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學,“想”數(shù)學,讓學生真正感受到生活之中處處有數(shù)學。

2.在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉(zhuǎn)化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

3.新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數(shù)學,學生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

同時,我也感覺到本節(jié)課的設計有不妥之處,主要有以下三點:

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2.雖然我在設計本節(jié)課時是體現(xiàn)讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數(shù)量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。

直線和圓的位置關系教學反思和總結(jié)篇七

新課程指出:學生是學習的主體,是發(fā)展的主體。在課堂教學中,教師要將課堂的主動權讓給學生,作為教師應以“探究過程,探究方法,探究結(jié)果,運用結(jié)果”為主線安排教學進程,應高度重視學生的主動參與、親自研究、動手操作,讓學生從中去體驗學習知識的過程,引導學生在發(fā)現(xiàn)問題、分析問題、解決問題的同時,培養(yǎng)學生的自主學習能力和創(chuàng)新意識。

在《直線和圓的位置關系》這節(jié)課中,我首先由生活中的情景——日落引入,讓學生發(fā)現(xiàn)地平線和太陽位置關系的變化,從而引出課題:直線和圓的位置關系。然后由學生平移直尺,自主探索發(fā)現(xiàn)直線和圓的三種位置關系,給出定義,聯(lián)系實際,由學生發(fā)現(xiàn)日常生活中存在的直線和圓相交、相切、相離的現(xiàn)象,緊接著引導學生探索三種位置關系下圓心到直線的距離與圓半徑的大小關系,由“做一做”進行應用,最后去解決實際問題。

1.由日落的三張照片(太陽與地平線相離、相切、相交)引入,學生比較感興趣,充分感受生活中反映直線與圓位置關系的現(xiàn)象,體驗到數(shù)學來源于實踐。對生活中的數(shù)學問題發(fā)生好奇,這是學生最容易接受的學習數(shù)學的好方法。新課標下的數(shù)學教學的基本特點之一就是密切關注數(shù)學與現(xiàn)實生活的聯(lián)系,從生活中“找”數(shù)學,“想”數(shù)學,讓學生真正感受到生活之中處處有數(shù)學。

2.在探索直線和圓位置關系所對應的數(shù)量關系時,我先引導學生回顧點和圓的位置關系所對應的數(shù)量關系,啟發(fā)學生運用類比的思想來思考問題,解決問題,學生很輕松的就能夠得出結(jié)論,從而突破本節(jié)課的難點,使學生充分理解位置關系與數(shù)量關系的相互轉(zhuǎn)化,這種等價關系是研究切線的理論基礎,從而為下節(jié)課探索切線的性質(zhì)打好基礎。

3.新課標下的數(shù)學強調(diào)人人學有價值的數(shù)學,人人學有用的數(shù)學,為此,在做一做之后我安排了一道實際問題:“經(jīng)過兩村莊的筆直公路會不會穿越一個圓形的森林公園?”培養(yǎng)學生解決實際問題的能力。由于此題要學生回到生活中去運用數(shù)學,學生的積極性高漲,都急著討論解決方案,是乏味的數(shù)學學習變得有滋有味,使學生體會到學數(shù)學的重要性,體驗“生活中處處用數(shù)學”。

1.學生觀察得到直線和圓的三種位置關系后,是由我講解的三個概念:相交、相切、相離。學生被動的接受,對概念的理解不是很深刻,可以改為讓學生下定義,師生共同討論的形式給學生以思維想象的空間,充分調(diào)動學生的積極性,使學生實現(xiàn)自主探究。

2.雖然我在設計本節(jié)課時是體現(xiàn)讓學生自主操作探究的原則,但在讓學生探索直線和圓三種位置關系所對應的數(shù)量關系時,沒有給予學生足夠的探索、交流的時間,限制了學生的思維。此處應充分發(fā)揮小組的特點,讓學生相互啟發(fā)討論,形成思維互補,集思廣益,從而使概念更清楚,結(jié)論更準確。

3.對“做一做”的處理不夠,這一環(huán)節(jié)是對探究的成績與效果的探索與檢驗,重在幫助學生掌握方法,我在講解“做一做”時,沒有充分展示解題思路,沒有及時進行方法上的總結(jié),致使部分學生在解決實際問題時思路不明確。教師要根據(jù)情況,簡要歸納、概括應掌握的方法,使學生能夠舉一反三,鞏固和擴大知識,吸收、內(nèi)化知識。

總之,新課程的課堂教學要讓學生作為課堂教學的主體參與到課堂教學過程中來,充分展現(xiàn)自己的個性,施展自己的才華,使學生在參與和體驗的過程中真正成為學習的主人,養(yǎng)成勇于探索、敢于實踐的個性品質(zhì)。與此同時,教師還要為學生的學習創(chuàng)造探究的環(huán)境,營造探究的氛圍,促進探究的`開展,把握探究的深度,評價探究的效果。

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內(nèi)不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服