又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當(dāng)前位置:網(wǎng)站首頁 >> 作文 >> 教育工作者的二次根式教學(xué)設(shè)計(jì)(通用22篇)

教育工作者的二次根式教學(xué)設(shè)計(jì)(通用22篇)

格式:DOC 上傳日期:2024-02-14 05:37:02
教育工作者的二次根式教學(xué)設(shè)計(jì)(通用22篇)
時間:2024-02-14 05:37:02     小編:QJ墨客

總結(jié)可以幫助我們分析問題,找到解決方案。如何解決人際沖突,維護(hù)人際關(guān)系的和諧?通過閱讀總結(jié)范文,可以了解不同領(lǐng)域、不同層次的總結(jié)寫作的風(fēng)格和特點(diǎn)。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇一

這節(jié)課因?yàn)橛辛饲懊鎸W(xué)習(xí)的基礎(chǔ),所以學(xué)生學(xué)習(xí)起來并不難,本節(jié)課的重點(diǎn)是二次根式的乘除法法則,難點(diǎn)是靈活運(yùn)用法則進(jìn)行計(jì)算和化簡。

開始可以從二次根式的性質(zhì)引入,將二次根式的性質(zhì)反過來就是二次根式的乘除法法則:,利用這個法則,可以進(jìn)行二次根式的乘法和除法運(yùn)算。

本節(jié)課中的易錯點(diǎn)是運(yùn)算的最后結(jié)果不是最簡結(jié)果,因?yàn)閷W(xué)生只顧著運(yùn)用法則進(jìn)行計(jì)算了,忽略了二次根式的化簡,舉例說明:,這個運(yùn)算過程只是運(yùn)用了法則,但沒有進(jìn)行化簡,應(yīng)該是。

本節(jié)課中的難點(diǎn)是對于分母中含有根號的式子不會化簡,這應(yīng)該牽涉到分母有理化,分母有理化這個概念本章課本中沒有提及,但是課后練習(xí)和習(xí)題中也有涉及,如何處理呢?舉例說明:

隨堂練習(xí)中一個題目對于這個題目,很多學(xué)生表示都不知道從何下手,只有一些程度好的學(xué)生有自己的看法,我讓學(xué)生進(jìn)行了講解:,學(xué)生能將分母中不含有根號,想到用來代替,然后再利用法則進(jìn)行解答,真是聰明。學(xué)生的這種做法,我給予了充分的肯定,并表揚(yáng)了這位同學(xué)。并且我也用分母有理化的思想進(jìn)行了另一種方法的講解,因?yàn)楹竺嫖蚁胙a(bǔ)一節(jié)分母有理化,所以在這里只是展示了一下過程,這樣同樣能達(dá)到化簡的目的,然后讓學(xué)生對比了一下剛才那位同學(xué)的做法,沒有展開講。

剩下的時間我主要針對法則讓學(xué)生進(jìn)行了練習(xí),做正確的小組加分,不正確的進(jìn)行點(diǎn)評,到下課時,學(xué)生基本掌握了二次根式的乘除法的計(jì)算。

學(xué)生比較容易理解這兩個法則,下面可以學(xué)習(xí)例2,主要是讓學(xué)生通過看課本來理解法則的`應(yīng)用,在學(xué)生理解例題的基礎(chǔ)上,讓學(xué)生思考還有沒有其他方法來解決這些題目,以此來增加學(xué)生解題的思路與方法。在這里可以拿出1-2個題目來示范。

如,可以有兩種解法:

法一:這一種也是課本上的方法,是直接利用了二次根式的乘法法則。

法二:這是利用了二次根式的性質(zhì)。

通過這個題目的講解,可讓學(xué)生靈活掌握二次根式的計(jì)算方法。

再一個就是二次根式的乘除法混合運(yùn)算,課本上有一個例子,,通過這個例子引出一個公式:,算是對法則的一個延伸。學(xué)生通過這個公式,也可以進(jìn)行一些二次根式的運(yùn)算。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇二

在二次根式的除法這一節(jié)的學(xué)習(xí)中,這塊教學(xué)內(nèi)容是在實(shí)數(shù)的基礎(chǔ)上,重點(diǎn)教學(xué)的關(guān)鍵是對二次根式能進(jìn)行計(jì)算和化簡,在本節(jié)教學(xué)中,存在以下問題。

1、在教學(xué)設(shè)計(jì)中,仍然存在著對學(xué)情分析不足,主要是過高估計(jì)學(xué)生的學(xué)習(xí)能力,對以前學(xué)過的知識的復(fù)習(xí)工作做的不夠,導(dǎo)致后續(xù)的新知識的學(xué)習(xí)遇到不少麻煩。

2、九年級數(shù)學(xué)是新教材,在教學(xué)過程中,我的教學(xué)理念還沒有及時更新,從而導(dǎo)致教學(xué)不到位。在二次根式的化簡中,比較重視對具體數(shù)的化簡,對字母的要求不高,一般都確保二次根式有意義,而沒有注重要求引導(dǎo)學(xué)生注意二次根式中字母的取值范圍,要求培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和推斷字母取值范圍的能力。剛開始對這一要求理解不到位,沒有對學(xué)生提出明確要求,也沒有重視對典型錯誤的分析。

3、在促進(jìn)學(xué)生探索求知和有效學(xué)習(xí)方面還存在明顯不足。新的教學(xué)理念要求教師在課堂教學(xué)中注意引導(dǎo)學(xué)生探究學(xué)習(xí),在我的課堂教學(xué)中,經(jīng)常為了完成教學(xué)任務(wù)而忽視這方面的引導(dǎo)。在本節(jié)中,其實(shí)有許多內(nèi)容可以進(jìn)行這方面的嘗試。在學(xué)生探究的過程中重視不夠,若能讓學(xué)生在探究的基礎(chǔ)上歸納出方法,學(xué)習(xí)的效果會提高很多,學(xué)習(xí)的能力也會不斷提高。

4、在學(xué)生的學(xué)習(xí)方面,也有值得反思的地方我班的學(xué)生在老師指導(dǎo)下學(xué)習(xí)數(shù)學(xué)方面的積極性并不差,但自主學(xué)習(xí)方面還存在著不足。遇到困難有畏難情緒、對老師的依賴性太強(qiáng)、作業(yè)只求完成率而不講質(zhì)量、學(xué)習(xí)的競爭意識和自我要求明顯缺乏。這些都有待于在今后的教學(xué)中進(jìn)行教育和引導(dǎo),加強(qiáng)改進(jìn),提高教學(xué)實(shí)效。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇三

2學(xué)情分析。

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行。二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

3重點(diǎn)難點(diǎn)。

重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).。

難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4教學(xué)過程。

4。1第一學(xué)時。

教學(xué)活動。

活動1【導(dǎo)入】復(fù)習(xí)提問,探究規(guī)律。

師生活動學(xué)生回答。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇四

(2)會進(jìn)行簡單的二次根式的除法運(yùn)算;。

本節(jié)內(nèi)容主要是在做二次根式的`除法運(yùn)算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行。二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).。

難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4。1第一學(xué)時。

問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

師生活動學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.。

2.觀察思考,理解法則。

問題2教材第8頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時出現(xiàn)錯誤。

問題4對例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動學(xué)生利用法則直接運(yùn)算,一般根號下不含分母和開得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡單的運(yùn)算。

問題5對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡。

問題2教材第8頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時出現(xiàn)錯誤。

問題4對例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動學(xué)生利用法則直接運(yùn)算,一般根號下不含分母和開得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡單的運(yùn)算。

問題5對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡。

例1計(jì)算:(1);(2);(3)。

師生活動提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?

【設(shè)計(jì)意圖】通過具體問題,讓學(xué)生在實(shí)際運(yùn)算中培養(yǎng)運(yùn)算能力,訓(xùn)練運(yùn)算技能,

問題5你能從例題的解答過程中,總結(jié)一下二次根式的運(yùn)算結(jié)果有什么特征嗎?

師生活動學(xué)生總結(jié),師生共同補(bǔ)充、完善。要總結(jié)出:

(1)這些根式的被開方數(shù)都不含分母;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;

(3)分母中不含根號;

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時總結(jié),提出最簡二次根式的概念,要強(qiáng)調(diào),在二次根式的運(yùn)算中,一般要把最后結(jié)果化為最簡二次根式。

問題6課件展示一組二次根式的計(jì)算、化簡題。

【設(shè)計(jì)意圖】讓學(xué)生用總結(jié)出的結(jié)論進(jìn)行二次根式的運(yùn)算。

例2教材第9頁例7。

再提問章引言中的問題現(xiàn)在能解決了嗎?

【設(shè)計(jì)意圖】鞏固性練習(xí),同時培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運(yùn)算法則解決實(shí)際問題的能力。

1.在、、中,最簡二次根式為。

【設(shè)計(jì)意圖】考查對最簡二次根式的概念的理解。

2.化簡下列各式為最簡二次根式:;。

【設(shè)計(jì)意圖】復(fù)習(xí)二次根式的運(yùn)算法則和運(yùn)算性質(zhì)。鼓勵學(xué)生用不同方法進(jìn)行計(jì)算。對于分母含二次根式的處理,要結(jié)合整式的乘法公式進(jìn)行計(jì)算。

3.化簡:(1);(2)。

【設(shè)計(jì)意圖】綜合運(yùn)用二次根式的概念、性質(zhì)和運(yùn)算法則進(jìn)行二次根式的運(yùn)算。

教科書第10頁練習(xí)第1,2,3題;

教科書習(xí)題16。2第10,11題。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇五

2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

教學(xué)重點(diǎn)。

教學(xué)難點(diǎn)。

一個二次根式化成最簡二次根式的方法。

教學(xué)過程。

1.把下列各根式化簡,并說出化簡的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡前后的根式,被開方數(shù)有什么不同?

化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

3.啟發(fā)學(xué)生回答:

二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

例1把下列各式化成最簡二次根式:

例2把下列各式化成最簡二次根式:

4.總結(jié)。

把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

1.把下列各式化成最簡二次根式:

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇六

2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

1.把下列各根式化簡,并說出化簡的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡前后的根式,被開方數(shù)有什么不同?

化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

3.啟發(fā)學(xué)生回答:

二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

4.總結(jié)。

把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

本節(jié)課學(xué)習(xí)了最簡二次根式的定義及化簡二次根式的方法。同學(xué)們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當(dāng)被開方數(shù)為多項(xiàng)式時要進(jìn)行因式分解,被開方數(shù)為兩個分?jǐn)?shù)的和則要先通分,再化簡。

字).

教育工作者的二次根式教學(xué)設(shè)計(jì)篇七

初次進(jìn)行“信息技術(shù)與課程整合”課程的實(shí)驗(yàn),首先感到的一個字就是“累”。也許是缺乏經(jīng)驗(yàn)的原因。盡管課前進(jìn)行充分的準(zhǔn)備,可是在實(shí)施的過程中,大概是傳統(tǒng)的單一型課程印記太深刻的緣故吧,總是擔(dān)心學(xué)生對知識點(diǎn)的掌握會產(chǎn)生問題!有意思的是一開始學(xué)生面對課堂上大量的可自由支配的時間也感到不會用。部分小組的學(xué)生缺乏動手探索的精神,總在觀察其他小組的進(jìn)展,或是期待教師的提示。寄希望于有了現(xiàn)成的樣板后再進(jìn)行模仿。使我猶感“二期課改”的必要性,絕不能再以“一言堂”、“啟發(fā)和灌輸”為教學(xué)模式了。

其次,變課堂上一對多的教學(xué)結(jié)構(gòu)為學(xué)生之間鏈?zhǔn)綄W(xué)習(xí)結(jié)構(gòu),更能促進(jìn)學(xué)生之間的合作與交流,使他們成為學(xué)習(xí)的主人。特別是其中一組同學(xué),起初都不敢上機(jī)操作,你推我讓。在指導(dǎo)老師的幫助下,互相確定的了自己的優(yōu)勢與劣勢,進(jìn)行了分工。有的負(fù)責(zé)搜索、有的負(fù)責(zé)整理、有的做筆記等等。在一段時間以后這個小組也能夠獨(dú)立的完成課題學(xué)習(xí)的任務(wù)。我想在合作學(xué)習(xí)的過程中,每個人都能認(rèn)真傾聽他人的意見和見解,也是一種人際交往能力的提高。

在尋求學(xué)習(xí)資源的過程中,學(xué)生們在互相指點(diǎn)和幫助下,鞏固了計(jì)算機(jī)操作,并能100%應(yīng)用搜索引擎進(jìn)行查找,在交流心得體會的過程中,進(jìn)一步學(xué)習(xí)別人的點(diǎn)滴經(jīng)驗(yàn),逐步提高信息技術(shù)的素養(yǎng)。

時間的緊迫仍舊是整合課程中的一個矛盾,由于小組內(nèi)同學(xué)的信息技術(shù)水準(zhǔn)參差不齊,如果僅有一兩個同學(xué)進(jìn)行操作,雖然表面上也實(shí)現(xiàn)了小組的要求,可是又把學(xué)生之間的差距暴露了出來。因此只能夠人人進(jìn)行嘗試,互相幫助,共同完成目標(biāo)。當(dāng)然由于事先已經(jīng)考慮到這一問題,因此部分教學(xué)內(nèi)容可以留待下節(jié)課的解決。盡量保證學(xué)生獨(dú)立探究的時間,又要保證一定學(xué)習(xí)效率,這對教師的組織教學(xué)提出了很高的要求。

總之,作為一名教師,我感受到學(xué)生學(xué)習(xí)方式和習(xí)慣的小小變化,更感到自己在實(shí)驗(yàn)課題方面研究上屬于較淺層次。自己也要多學(xué)習(xí)相關(guān)科研文章,設(shè)計(jì)好下一堂系列課。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇八

重點(diǎn)和難點(diǎn)。

過程設(shè)計(jì)。

計(jì)算:

我們再看下面的問題:

簡,得到。

從上面例子可以看出,如果把二次根式先進(jìn)行化簡,會對解決問題帶來方便.

答:

1.被開方數(shù)的因數(shù)是整數(shù)或整式;

2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.

滿足上面兩個條件的二次根式叫做最簡二次根式.

(l)不是最簡二次根式.因?yàn)閍3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式.

整數(shù).

(3)是最簡二次根式.因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式.

(4)是最簡二次根式.因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式.

(5)是最簡二次根式.因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式.

(6)不是最簡二次根式.因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.

指出:從(1),(2),(6)題可以看到如下兩個結(jié)論.

1.在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;

2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式.

分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。

分析:題(l)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式.

題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式.

通過例2、例3,請同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法.

答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡.

如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡.

a.2b.3。

c.1d.0。

答案:

1.b。

2.b。

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.

(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號.

答案:

教育工作者的二次根式教學(xué)設(shè)計(jì)篇九

1、通過二次根式混合運(yùn)算的學(xué)習(xí),進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,會進(jìn)行二次根式的混合運(yùn)算。

2、在進(jìn)行二次根式混合運(yùn)算的過程中,體會類比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。

教學(xué)難點(diǎn):類比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。

教學(xué)過程:

(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)。

1、學(xué)生匯報(bào)解題過程,生說師寫;。

2、發(fā)動其他學(xué)生評價補(bǔ)充完善;。

3、師畫龍點(diǎn)睛強(qiáng)調(diào):。

(1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,先乘方,再乘除,最后加減。

(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。

(先讓學(xué)生獨(dú)立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問題的學(xué)生匯報(bào)展示,發(fā)動學(xué)生評價完善,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法。)。

本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補(bǔ)充。)。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十

這是八年級第十六章第三節(jié),學(xué)生是在已掌握最簡二次根式、合并同類二次根式以及二次根式的加減法的基礎(chǔ)上進(jìn)一步學(xué)習(xí)二次根式的乘除法,同時為以后學(xué)習(xí)二次根式的混合運(yùn)算作鋪墊。首先,情景引入:通過將大正方形中已知兩小正方形的面積,求剩下的長方形面積的問題引入二次根式的乘法及乘法法則;其次,通過例題1利用總結(jié)出二次根式的乘除法則進(jìn)行計(jì)算同時注意結(jié)果要化簡;再次,利用乘除法關(guān)系引入二次根式的除法法則并用之計(jì)算;最后,通過二次根式的乘除法來解決實(shí)際問題。

總而言之:在二次根式的乘除法運(yùn)算法則的學(xué)習(xí)和應(yīng)用的過程中,滲透分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和學(xué)習(xí)興趣。

此節(jié)教學(xué)過程中要注意:在學(xué)生學(xué)習(xí)過程中對二次根式的乘除法法則理解上問題不大,但常常忘記運(yùn)算結(jié)果需要化簡,此外被開方數(shù)是多項(xiàng)式的乘除法運(yùn)算上容易出錯。象練習(xí)冊第3題的(3)小題盡管課堂上練過一題,但還是有人錯。

初的一天,吳亞萍教授來學(xué)校指導(dǎo),學(xué)校要求我準(zhǔn)備一節(jié)新基礎(chǔ)的研討課。于是,我按我的理解與想法上了一堂形似的新基礎(chǔ)教學(xué)研討課,憑我的功底,課當(dāng)然獲得了同事的好評,但吳教授的當(dāng)頭一棒讓我震驚了。吳教授對“學(xué)生討論”的講述,評點(diǎn)讓我感覺到耳目一新。是的,教學(xué)這么多年,讓學(xué)生討論、活動卻沒有認(rèn)真思考過它的價值??偸钦J(rèn)為討論是一個教學(xué)的環(huán)節(jié),也是研討課的需要,卻不知道還有“假討論”、“白討論”一說。更不要說什么叫開放,如何開放,開放到什么程度的問題。那一天我被吳教授的評課折服了。課后,我再次回憶反思這堂課的問題,我深深感覺到差距。我再一次仔細(xì)閱讀了葉瀾教授和吳亞萍教授的相關(guān)著作。才真正體會到新基礎(chǔ)教育的理念要求是相當(dāng)高的。

可以說是理想化的教育狀態(tài)。至今,我都不敢說我領(lǐng)悟了新基礎(chǔ)教育。我只是明白了新基礎(chǔ)教育對教師提出了更高的要求,不僅要求教師有扎實(shí)的功底,還要求教師對整個初中教學(xué)的內(nèi)容要理解,甚至小學(xué)、高中的教學(xué)內(nèi)容也要了解,這樣才可以為學(xué)生建立網(wǎng)狀的知識結(jié)構(gòu)。更要求教師有靈活的應(yīng)變能力,以靈活處理教學(xué)過程中出現(xiàn)的不可預(yù)測的資源。對備課也提出了更高的要求,不僅要備書本知識,更要備學(xué)生,對不同的班級,不同的學(xué)生都提出不同的要求。要預(yù)測不同學(xué)生可能出現(xiàn)的不同的問題。此時,我感覺自己是多么的貧乏。俗話說,知恥而后勇,我要努力去改變。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十一

2、掌握把二次根式化為最簡二次根式的方法。

重點(diǎn):化二次根式為最簡二次根式的方法。

計(jì)算:

我們再看下面的問題:

簡,得到。

從上面例子可以看出,如果把二次根式先進(jìn)行化簡,會對解決問題帶來方便。

答:

1、被開方數(shù)的因數(shù)是整數(shù)或整式;

2、被開方數(shù)中不含能開得盡方的因數(shù)或因式。

滿足上面兩個條件的二次根式叫做最簡二次根式。

例1試判斷下列各式中哪些是最簡二次根式,哪些不是?為什么?

(1)不是最簡二次根式。因?yàn)閍3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。整數(shù)。

(3)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式。

(4)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式。

(5)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式。

(6)不是最簡二次根式。因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22。

指出:從(1),(2),(6)題可以看到如下兩個結(jié)論。

1、在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;

2、在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。

例2把下列各式化為最簡二次根式:

分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。

例3把下列各式化成最簡二次根式:

分析:題(1)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式。

題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。

通過例2、例3,請同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法。

答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡。

如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。

a、2b、3。

c、1d、0。

3、把下列各式化成最簡二次根式:

答案:

1、b。

2、b。

1、最簡二次根式必須滿足兩個條件:

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。

2、把一個式子化為最簡二次根式的方法是:

(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號。

1、把下列各式化成最簡二次根式:

2、把下列各式化成最簡二次根式:

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十二

重點(diǎn):化二次根式為最簡二次根式的方法.

計(jì)算:

我們再看下面的問題:

簡,得到。

從上面例子可以看出,如果把二次根式先進(jìn)行化簡,會對解決問題帶來方便.

答:

1.被開方數(shù)的因數(shù)是整數(shù)或整式;

2.被開方數(shù)中不含能開得盡方的因數(shù)或因式.

滿足上面兩個條件的二次根式叫做最簡二次根式.

(l)不是最簡二次根式.因?yàn)閍3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式.

整數(shù).

(3)是最簡二次根式.因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式.

(4)是最簡二次根式.因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式.

(5)是最簡二次根式.因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式.

(6)不是最簡二次根式.因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.

指出:從(1),(2),(6)題可以看到如下兩個結(jié)論.

1.在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;

2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式.

分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。

分析:題(l)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式.

題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式.

通過例2、例3,請同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法.

答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡.

如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡.

的二次根式的式子有_____個.[]。

a.2b.3。

c.1d.0。

答案:

1.b。

2.b。

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式.

(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號.

答案:

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十三

2、內(nèi)容解析。

二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運(yùn)算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運(yùn)算的基礎(chǔ)。

基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式。

1、教學(xué)目標(biāo)。

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

(3)理解最簡二次根式的概念、

2、目標(biāo)解析。

(1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進(jìn)行運(yùn)算。

(3)通過觀察二次根式的運(yùn)算結(jié)果,理解最簡二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡二次根式。

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行、二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算、教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

1、復(fù)習(xí)提問,探究規(guī)律。

問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

師生活動學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十四

2.掌握把二次根式化為最簡二次根式的方法。

重點(diǎn)和難點(diǎn)。

過程設(shè)計(jì)。

計(jì)算:

我們再看下面的問題:

簡,得到。

從上面例子可以看出,如果把二次根式先進(jìn)行化簡,會對解決問題帶來方便。

答:

1.被開方數(shù)的因數(shù)是整數(shù)或整式;

2.被開方數(shù)中不含能開得盡方的因數(shù)或因式。

滿足上面兩個條件的二次根式叫做最簡二次根式。

(l)不是最簡二次根式。因?yàn)閍3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。

整數(shù)。

(3)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式x2+y2開不盡方,而且是整式。

(4)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式a-b開不盡方,而且是整式。

(5)是最簡二次根式。因?yàn)楸婚_方數(shù)的因式5x開不盡方,而且是整式。

(6)不是最簡二次根式。因?yàn)楸婚_方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22.

指出:從(1),(2),(6)題可以看到如下兩個結(jié)論。

1.在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;

2.在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。

分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)。

分析:題(l)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式。

題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。

通過例2、例3,請同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法。

答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡。

如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。

a.2b.3。

c.1d.0。

3.把下列各式化成最簡二次根式:

答案:

1.b。

2.b。

(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。

2.把一個式子化為最簡二次根式的方法是:

(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號。

1.把下列各式化成最簡二次根式:

2.把下列各式化成最簡二次根式:

答案:

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十五

這節(jié)課的主要目標(biāo)有二:。

2。體驗(yàn)到分母有理化最簡方法是先局部化簡;。

對于第一個目標(biāo)期望學(xué)生能自行歸納出來最簡二次根式一般形式就最好,對于第二個目標(biāo)讓學(xué)生自行體驗(yàn)到先化簡再分母有理化的方法是最簡方法.

今天上午結(jié)束這節(jié)課后,頗有感觸.同學(xué)們討論問題提的時候自始至終非常專注,而且很高效,有三個幾乎從來不舉手回答問題的同學(xué)能大膽走上講臺給大家講解二次根式一道除法題的三種解法,他們的登臺引起全班同學(xué)的歡呼.這是組員們的'努力所帶來的結(jié)果.對于這節(jié)課有以下幾點(diǎn)值得思考:。

問題的設(shè)置:。

這節(jié)課為了讓同學(xué)掌握二次根式的定義,我直接拋出“什么是二次根式”。

這個問題讓同學(xué)們?nèi)ビ懻?但后來效果并沒有達(dá)到我想象的高度.其實(shí)后來想想這個問題的設(shè)置不能過于直接,應(yīng)當(dāng)列舉諸多二次根式,讓同學(xué)們判斷哪些是二次根式,并討論其理由,這樣引導(dǎo)學(xué)生從感性過渡到理性.從而順利掌握這個概念的本質(zhì).所以問題的設(shè)置不能死板,教條,要多樣化,其目的是讓學(xué)生能高效的掌握知識本身.

教學(xué)的規(guī)律:

1.循序漸進(jìn):這節(jié)課原本很希望學(xué)生能在一節(jié)課內(nèi)就體會到先局部化簡后在進(jìn)行分母有理化的方法計(jì)算起來比較簡潔.但這節(jié)課并沒有實(shí)現(xiàn)這個目的,而且沒有想到學(xué)生竟然給出多種方法.我想這一節(jié)課是否,對于第二個教學(xué)目標(biāo)只能是一個循序漸進(jìn)的過程,應(yīng)當(dāng)把這個問題延伸到下一節(jié)課,可以在下一節(jié)課中把學(xué)生的課后作業(yè)的解法對比,讓學(xué)生去體會哪種方法更好,更簡潔.不要急于在這一節(jié)課中去解決,這一節(jié)課只要能用自己的方法解決就行.

2.作業(yè)的處理:以前處理作業(yè)中總是對于做錯的題目給一個紅叉,并每一份作業(yè)評分.從現(xiàn)在開始,作業(yè)不再給紅叉,用橫線標(biāo)注代替紅叉,也不給評分.讓孩子們關(guān)注的永遠(yuǎn)是知識本身,對于作業(yè)始終強(qiáng)調(diào)的是誠實(shí)的獨(dú)立作業(yè),認(rèn)真的糾錯這兩點(diǎn).

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十六

本節(jié)的重點(diǎn)是的化簡。本章自始至終圍繞著與計(jì)算進(jìn)行,而的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論。

本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式。

這個公式的表達(dá)形式對學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時,則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯誤。

1.性質(zhì)的引入方法很多,以下2種比較常用:

(1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題。

1)、、各等于什么?

2)、、各等于什么?

啟發(fā)、引導(dǎo)學(xué)生猜想出。

(2)從算術(shù)平方根的意義引入。

2.性質(zhì)的鞏固有兩個方面需要注意:

(1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;

(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時要注意細(xì)分層次加以鞏固,如單個數(shù)字,單個字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等。

(第1課時)。

一、教學(xué)目標(biāo)。

2.能夠利用二次根式的性質(zhì)化簡二次根式。

3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法。

對比、歸納、總結(jié)。

三、重點(diǎn)和難點(diǎn)。

1.重點(diǎn):理解并掌握二次根式的性質(zhì)。

2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式。

四、課時安排。

1課時。

五、教具學(xué)具準(zhǔn)備。

投影儀、膠片、多媒體。

六、師生互動活動設(shè)計(jì)。

復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動為主。

轉(zhuǎn)載自 zgxlcd.com

七、教學(xué)過程。

一、導(dǎo)入新課。

我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根。

問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?

答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù)。

二、新課。

計(jì)算下列各題,并回答以下問題:

(1);(2);(3);

(4);(5);(6)。

(7);(8)。

1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?

2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?

3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論。

答:

(1);(2);(3);

(4);(5);(6)。

(7);(8).

1.(1),(2),(3)各題中的被開方數(shù)的冪的底數(shù)都是正數(shù);(4),(5),(6),(7)各題中的被開方數(shù)的冪的底數(shù)都是負(fù)數(shù);(8)題被開方數(shù)的冪的底數(shù)是0.

2.(1),(2),(3),(8)各題的計(jì)算結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)都分別相等;(4),(5),(6),(7)各題的計(jì)算結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)分別互為相反數(shù)。

3.用字母表示(1),(2),(3),(8)各題中被開方數(shù)的冪的底數(shù),有。

(),

用字母表示(4),(5),(6),(7)各題中被開方數(shù)的冪的底數(shù),有。

().

一個非負(fù)數(shù)的平方的算術(shù)平方根,等于這個非負(fù)數(shù)本身;一個負(fù)數(shù)的平方的算術(shù)平方根,等于這個負(fù)數(shù)的相反數(shù)。

問:請把上述討論結(jié)論,用一個式子表示。(注意表示條件和結(jié)論)。

答:

請同學(xué)回憶實(shí)數(shù)的絕對值的代數(shù)意義,它和上述二次根式的性質(zhì)有什么聯(lián)系?

答:

填空:

1.當(dāng)_________時,;

2.當(dāng)時,,當(dāng)時,;

3.若,則________;

4.當(dāng)時,.

答:

1.當(dāng)時,;

2.當(dāng)時,,

當(dāng)時,;

3.若,則;

4.當(dāng)時,.

例1化簡().

分析:可以利用積的算術(shù)平方根的性質(zhì)及二次根式的性質(zhì)化簡。

解,因?yàn)?,所以,所以?/p>

指出:在化簡和運(yùn)算過程中,把先寫成,再根據(jù)已知條件中的取值范圍,確定其結(jié)果。

例2化簡().

分析:根據(jù)二次根式的性質(zhì),當(dāng)時,.

解.

例3化簡:(1)();(2)().

分析:根據(jù)二次根式的性質(zhì),當(dāng)時,.

解(1).

(2).

注意:(1)題中的被開方數(shù),因?yàn)?,所?

(2)題中的被開方數(shù),因?yàn)?,所?

這里的取值范圍,在已知條件中沒有直接給出,但可以由已知條件分析而得出。

例4化簡.

分析:根據(jù)二次根式的性質(zhì),有。

所以要比較與3及1與的大小以確定及的符號,然后再進(jìn)行化簡。

解因?yàn)椋?,所以?/p>

所以。

三、課堂練習(xí)。

1.求下列各式的值:

(1);(2).

2.化簡:

(1);(2);

(3)();(4)().

3.化簡:

(1);(2);

(3);(4);

(5);(6)().

答案:

1.(1)0.1;(2).

2.(1);(2);(3);(4).

3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.

四、小結(jié)。

1.二次根式的意義是,所以,因此,其中可以取任意實(shí)數(shù)。

2.化簡形如的二次根式,首先可把寫成的形式,再根據(jù)已知條件中字母的取值范圍,確定其結(jié)果。

3.在化簡中,注意運(yùn)用題設(shè)中的隱含條件,如二次根式有意義的條件是被開方,這是隱含條件。

五、作業(yè)。

1.化簡:

(1);(2);

(3)();(4)();

(5);(6)(,);

(7)().

2.化簡:

(1);

(2)();

(3)(,).

答案:

1.(1)-30;(2);(3);

(4);(5);(6);(7).

2.(1)2;(2)0;(3).

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十七

1.使學(xué)生了解最簡二次根式的概念和同類二次根式的概念.。

2.能判斷二次根式中的同類二次根式.。

3.會用同類二次根式進(jìn)行二次根式的加減.。

(二)能力訓(xùn)練點(diǎn)。

通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生的思維能力并提高學(xué)生的運(yùn)算能力.。

(三)德育滲透點(diǎn)。

(四)美育滲透點(diǎn)。

通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美.。

二、學(xué)法引導(dǎo)。

三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法。

四、課時安排。

2課時。

五、教具學(xué)具準(zhǔn)備。

投影片。

1.復(fù)習(xí)最簡二根式整式及的加減運(yùn)算,引入二次根式的加減運(yùn)算,盡量讓學(xué)生回答問題.。

七、教學(xué)步驟。

(一)明確目標(biāo)。

(二)整體感知。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十八

1、通過二次根式混合運(yùn)算的學(xué)習(xí),進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,會進(jìn)行二次根式的混合運(yùn)算。

2、在進(jìn)行二次根式混合運(yùn)算的過程中,體會類比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。

教學(xué)難點(diǎn):類比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。

教學(xué)過程:

(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的.板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)。

1、學(xué)生匯報(bào)解題過程,生說師寫;。

2、發(fā)動其他學(xué)生評價補(bǔ)充完善;。

3、師畫龍點(diǎn)睛強(qiáng)調(diào):。

(1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,先乘方,再乘除,最后加減。

(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。

(先讓學(xué)生獨(dú)立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問題的學(xué)生匯報(bào)展示,發(fā)動學(xué)生評價完善,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法。)。

本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補(bǔ)充。)。

將本文的word文檔下載到電腦,方便收藏和打印。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇十九

(2)會進(jìn)行簡單的二次根式的除法運(yùn)算;。

2學(xué)情分析。

本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行。二次根式的除法與分式的運(yùn)算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。

3重點(diǎn)難點(diǎn)。

重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).。

難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。

4教學(xué)過程。

4。1第一學(xué)時。

教學(xué)活動。

活動1【導(dǎo)入】復(fù)習(xí)提問,探究規(guī)律。

問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

師生活動學(xué)生回答。

【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.。

2.觀察思考,理解法則。

問題2教材第8頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時出現(xiàn)錯誤。

問題4對例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動學(xué)生利用法則直接運(yùn)算,一般根號下不含分母和開得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡單的運(yùn)算。

問題5對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡。

活動2【講授】觀察思考,理解法則。

問題2教材第8頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。

問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。

【設(shè)計(jì)意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時出現(xiàn)錯誤。

問題4對例題的運(yùn)算你有什么看法?是如何進(jìn)行的?

師生活動學(xué)生利用法則直接運(yùn)算,一般根號下不含分母和開得盡方的因數(shù)。

【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡單的運(yùn)算。

問題5對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?

師生活動學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡。

活動3【活動】例題示范,學(xué)會應(yīng)用。

例1計(jì)算:(1);(2);(3)。

師生活動提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?

【設(shè)計(jì)意圖】通過具體問題,讓學(xué)生在實(shí)際運(yùn)算中培養(yǎng)運(yùn)算能力,訓(xùn)練運(yùn)算技能,

問題5你能從例題的解答過程中,總結(jié)一下二次根式的運(yùn)算結(jié)果有什么特征嗎?

師生活動學(xué)生總結(jié),師生共同補(bǔ)充、完善。要總結(jié)出:

(1)這些根式的被開方數(shù)都不含分母;

(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;

(3)分母中不含根號;

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時總結(jié),提出最簡二次根式的概念,要強(qiáng)調(diào),在二次根式的運(yùn)算中,一般要把最后結(jié)果化為最簡二次根式。

問題6課件展示一組二次根式的計(jì)算、化簡題。

【設(shè)計(jì)意圖】讓學(xué)生用總結(jié)出的結(jié)論進(jìn)行二次根式的運(yùn)算。

活動4【練習(xí)】鞏固概念,學(xué)以致用。

例2教材第9頁例7。

再提問章引言中的問題現(xiàn)在能解決了嗎?

【設(shè)計(jì)意圖】鞏固性練習(xí),同時培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運(yùn)算法則解決實(shí)際問題的能力。

活動5【測試】目標(biāo)檢測設(shè)計(jì)。

1.在、、中,最簡二次根式為。

【設(shè)計(jì)意圖】考查對最簡二次根式的概念的理解。

2.化簡下列各式為最簡二次根式:;。

【設(shè)計(jì)意圖】復(fù)習(xí)二次根式的運(yùn)算法則和運(yùn)算性質(zhì)。鼓勵學(xué)生用不同方法進(jìn)行計(jì)算。對于分母含二次根式的處理,要結(jié)合整式的乘法公式進(jìn)行計(jì)算。

3.化簡:(1);(2)。

【設(shè)計(jì)意圖】綜合運(yùn)用二次根式的概念、性質(zhì)和運(yùn)算法則進(jìn)行二次根式的運(yùn)算。

活動6【作業(yè)】布置作業(yè)。

教科書第10頁練習(xí)第1,2,3題;

教科書習(xí)題16。2第10,11題。

文檔為doc格式。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇二十

課型:新授課。

教學(xué)目標(biāo):

2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過二次根式的加減法運(yùn)算解決實(shí)際問題。

3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

重難點(diǎn)分析:

重點(diǎn):能熟練進(jìn)行二次根式的加減運(yùn)算。

難點(diǎn):正確合并被開方數(shù)相同的二次根式,二次根式加減法的實(shí)際應(yīng)用。

教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識,運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

運(yùn)用教具:小黑板等。

教學(xué)過程:

問題與情景。

師生活動。

設(shè)計(jì)目的。

活動一:

情景引入,導(dǎo)學(xué)展示。

1.把下列二次根式化為最簡二次根式上述兩組二次根式,有什么特點(diǎn)?

這道題是舊知識的回顧,老師可以找同學(xué)直接回答。對于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。

問:什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。

加強(qiáng)新舊知識的聯(lián)系。通過觀察,初步認(rèn)識同類二次根式。

教育工作者的二次根式教學(xué)設(shè)計(jì)篇二十一

5.通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍。

難點(diǎn):確定二次根式中字母的取值范圍。

啟發(fā)式、講練結(jié)合。

(一)復(fù)習(xí)提問。

1.什么叫平方根、算術(shù)平方根?

2.說出下列各式的意義,并計(jì)算:

通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念。

觀察上面幾個式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,

表示的是算術(shù)平方根。

(二)引入新課。

我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

定義:式子叫做二次根式。

對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

(1)式子只有在條件a0時才叫二次根式,是二次根式嗎?呢?

若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次。

當(dāng)字母取何值時,下列各式為二次根式:

(1)(2)(3)(4)。

分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。

(2)-3x0,x0,即x0時,是二次根式。

(3),且x0,x0,當(dāng)x0時,是二次根式。

(4),即,故x-20且x-20,x2.當(dāng)x2時,是二次根式。

例4下列各式是二次根式,求式子中的字母所滿足的條件:

(1);(2);(3);(4)。

分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即:只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

解:(1)由2a+30,得。

(2)由,得3a-10,解得。

(3)由于x取任何實(shí)數(shù)時都有|x|0,因此,|x|+0.10,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。

(4)由-b20得b20,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

(三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))。

1.式子叫做二次根式,實(shí)際上是一個非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式。

2.式子中,被開方數(shù)(式)必須大于等于零。

(四)練習(xí)和作業(yè)。

1.判斷下列各式是否是二次根式。

分析:(2)中,,是二次根式;(5)是二次根式。因?yàn)閤是實(shí)數(shù)時,x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時,又如當(dāng)x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義。

2.a是怎樣的實(shí)數(shù)時,下列各式在實(shí)數(shù)范圍內(nèi)有意義?

教材p.172習(xí)題11.1;a組1;b組1.

教育工作者的二次根式教學(xué)設(shè)計(jì)篇二十二

(2)會用公式化簡二次根式。

(1)學(xué)生能通過計(jì)算發(fā)現(xiàn)規(guī)律并對其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;

(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式。

教學(xué)問題診斷分析。

本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運(yùn)算感到困難、運(yùn)算習(xí)慣的養(yǎng)成與符號意識的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣、,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣。

在教學(xué)時,通過實(shí)例運(yùn)算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡。

本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡。

1、復(fù)習(xí)引入,探究新知。

問題1什么叫二次根式?二次根式有哪些性質(zhì)?

師生活動學(xué)生回答。

【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡需要用到二次根式的性質(zhì)。

問題2教材第6頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?

師生活動學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容。

2、觀察比較,理解法則。

問題3簡單的根式運(yùn)算。

師生活動學(xué)生動手操作,教師檢驗(yàn)。

問題4二次根式的乘除成立的條件是什么?等式反過來有什么價值?

師生活動學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì)。

【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況、乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力。

3、例題示范,學(xué)會應(yīng)用。

例1化簡:(1)二次根式的乘除;(2)二次根式的乘除。

師生活動提問:你是怎么理解例(1)的?

師生合作回答上述問題、對于根式運(yùn)算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外、。

再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

例2計(jì)算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。

師生活動學(xué)生計(jì)算,教師檢驗(yàn)。

(3)例(3)的運(yùn)算是選學(xué)內(nèi)容、讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運(yùn)算、本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外、。

【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡化運(yùn)算、讓學(xué)生認(rèn)識到,二次根式是一類特殊的實(shí)數(shù),因此滿足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用。

教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號就要注意被開方數(shù)的符號、可以根據(jù)二次根式的概念對字母的符號進(jìn)行判斷,在移出根號時正確處理符號問題。

4、鞏固概念,學(xué)以致用。

練習(xí):教科書第7頁練習(xí)第1題、第10頁習(xí)題16、2第1題。

【設(shè)計(jì)意圖】鞏固性練習(xí),同時檢驗(yàn)乘法法則的掌握情況。

5、歸納小結(jié),反思提高。

師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:

(1)你能說明二次根式的乘法法則是如何得出的嗎?

(2)你能說明乘法法則逆用的意義嗎?

(3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

6、布置作業(yè):教科書第7頁第2、3題、習(xí)題16、2第1,6題。

1、下列各式中,一定能成立的是()。

【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ)。

2、化簡二次根式的乘除______________________________。

【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式。

3、已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是()。

【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式。

全文閱讀已結(jié)束,如果需要下載本文請點(diǎn)擊

下載此文檔
你可能感興趣的文章
a.付費(fèi)復(fù)制
付費(fèi)獲得該文章復(fù)制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點(diǎn)這里
b.包月復(fù)制
付費(fèi)后30天內(nèi)不限量復(fù)制
特價:9.99元 10元
微信掃碼支付
已付款請點(diǎn)這里 聯(lián)系客服