在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。
二次根式教學(xué)設(shè)計一等獎篇一
1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;
2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。
教學(xué)重點
最簡二次根式的定義。
教學(xué)難點
一個二次根式化成最簡二次根式的方法。
教學(xué)過程
1.把下列各根式化簡,并說出化簡的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡前后的根式,被開方數(shù)有什么不同?
化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。
3.啟發(fā)學(xué)生回答:
二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:
滿足下列兩個條件的二次根式叫做最簡二次根式:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡的因數(shù)或因式。
最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:
3.例題:
例1 把下列各式化成最簡二次根式:
例2 把下列各式化成最簡二次根式:
4.總結(jié)
把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。
當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。
1.把下列各式化成最簡二次根式:
2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。
二次根式教學(xué)設(shè)計一等獎篇二
1.了解二次根式的意義;
2.掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3.掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;
5.通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點和難點
重點:(1)二次根的意義;(2)二次根式中字母的取值范圍。
難點:確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過程
(一)復(fù)習(xí)提問
1.什么叫平方根、算術(shù)平方根?
2.說出下列各式的意義,并計算:
通過練習(xí)使學(xué)生進一步理解平方根、算術(shù)平方根的概念。
觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,
表示的是算術(shù)平方根。
(二)引入新課
我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:
新課:二次根式
定義:式子叫做二次根式。
對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a0時才叫二次根式,是二次根式嗎?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
二次根式教學(xué)設(shè)計一等獎篇三
一、案例背景:
本節(jié)是九年級上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對代數(shù)式的進一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內(nèi)字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎(chǔ)。
二、案例描述:
1、學(xué)習(xí)任務(wù)分析:
通過對數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵學(xué)生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉(zhuǎn)化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學(xué)活動經(jīng)驗。比如求二次根式根號內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學(xué)生數(shù)學(xué)書寫格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過的知識導(dǎo)入新課。設(shè)計合作學(xué)習(xí)活動,引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實際問題的過程,真正把學(xué)生放到主體位置。
2、學(xué)生的認(rèn)知起點分析:
學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準(zhǔn)備。另外,學(xué)生對數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過程,引導(dǎo)學(xué)生對二次根式概念的理解。
案例反思:
以往對這類問題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來。采取的措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。
2.合作活動:
第一位同學(xué)——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學(xué);
第二位同學(xué)——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學(xué);
第四位同學(xué)——復(fù)查者:請你一定要把好關(guān)哦!
出題者姓名: 解題者姓名:
第一個二次根式: 1.要使式子的值為實數(shù),求x的取值范圍.2.寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。3.寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
第二個二次根式: 1.要使式子的值為實數(shù),求x的取值范圍。2.寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。3.寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。
批改者姓名: 復(fù)查者姓名:
《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位--學(xué)生是學(xué)習(xí)的主人,同時,教師的地位、角色發(fā)生了變化,從 “ 主導(dǎo) ” 變成了 “學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者和合作者 ”。合作活動的安排就是對這一課程標(biāo)準(zhǔn)的體現(xiàn)。
二次根式教學(xué)設(shè)計一等獎篇四
1、通過二次根式混合運算的學(xué)習(xí),進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。
2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認(rèn)真仔細的學(xué)習(xí)品質(zhì),進一步提高運算能力。
教學(xué)重點:二次根式混合運算算理的理解。
教學(xué)難點:類比整式運算準(zhǔn)確快速的進行二次根式的混合運算。
教學(xué)過程:
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)
練習(xí)提綱:《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
1、學(xué)生匯報解題過程,生說師寫;
2、發(fā)動其他學(xué)生評價補充完善;
3、師畫龍點睛強調(diào):
(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。
(先讓學(xué)生獨立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況; 然后讓有一定問題的學(xué)生匯報展示,發(fā)動學(xué)生評價完善,老師強調(diào)關(guān)鍵地方,總結(jié)思想方法。)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補充。)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
二次根式教學(xué)設(shè)計一等獎篇五
課時:1課時
課型:新授課
教學(xué)目標(biāo):
1.知識目標(biāo):二次根式的加減法運算
2.能力目標(biāo):能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。
3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。
重難點分析:
重點:能熟練進行二次根式的加減運算。
難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應(yīng)用。
教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達到每個學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。
運用教具:小黑板等。
教學(xué)過程:
問題與情景
師生活動
設(shè)計目的
活動一:
情景引入,導(dǎo)學(xué)展示
1.把下列二次根式化為最簡二次根式上述兩組二次根式,有什么特點?
這道題是舊知識的回顧,老師可以找同學(xué)直接回答。對于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。
問:什么樣的二次根式能進行加減運算,運算到那一步為止。
由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。
加強新舊知識的聯(lián)系。通過觀察,初步認(rèn)識同類二次根式。
二次根式教學(xué)設(shè)計一等獎篇六
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
重點:
(1)二次根的意義;
(2)二次根式中字母的取值范圍。
難點:確定二次根式中字母的取值范圍。
啟發(fā)式、講練結(jié)合。
(一)復(fù)習(xí)提問
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計算:
通過練習(xí)使學(xué)生進一步理解平方根、算術(shù)平方根的概念。
觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,表示的是算術(shù)平方根。
(二)引入新課
我們已遇到的這樣的式子是我們這節(jié)課研究的`內(nèi)容,引出:
新課:二次根式
定義:式子叫做二次根式。
對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a0時才叫二次根式,是二次根式嗎?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的外在形態(tài)、請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
二次根式教學(xué)設(shè)計一等獎篇七
1、通過二次根式混合運算的學(xué)習(xí),進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。
2、在進行二次根式混合運算的過程中,體會類比思想,逐步養(yǎng)成認(rèn)真仔細的學(xué)習(xí)品質(zhì),進一步提高運算能力。
教學(xué)重點:二次根式混合運算算理的理解。
教學(xué)難點:類比整式運算準(zhǔn)確快速的進行二次根式的混合運算。
教學(xué)過程:
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書準(zhǔn)備,然后巡回指導(dǎo),了解情況、)
練習(xí)提綱:《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
1、學(xué)生匯報解題過程,生說師寫;
2、發(fā)動其他學(xué)生評價補充完善;
3、師畫龍點睛強調(diào):
(1)二次根式混合運算的運算順序跟有理數(shù)運算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。
(先讓學(xué)生獨立完成,老師做必要的板書準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問題的學(xué)生匯報展示,發(fā)動學(xué)生評價完善,老師強調(diào)關(guān)鍵地方,總結(jié)思想方法。)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒說到的,老師補充。)
《二次根式混合運算習(xí)題課》教學(xué)設(shè)計-楊桂花
二次根式教學(xué)設(shè)計一等獎篇八
1、使學(xué)生理解最簡二次根式的概念;
2、掌握把二次根式化為最簡二次根式的方法。
重點:化二次根式為最簡二次根式的方法。
難點:最簡二次根式概念的理解。
計算:
我們再看下面的問題:
簡,得到
從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便。
答:
1、被開方數(shù)的因數(shù)是整數(shù)或整式;
2、被開方數(shù)中不含能開得盡方的因數(shù)或因式。
滿足上面兩個條件的二次根式叫做最簡二次根式。
例1 試判斷下列各式中哪些是最簡二次根式,哪些不是?為什么?
解
(1)不是最簡二次根式。因為a3=a2·a,而a2可以開方,即被開方數(shù)中有開得盡方的因式。整數(shù)。
(3)是最簡二次根式。因為被開方數(shù)的因式x2+y2開不盡方,而且是整式。
(4)是最簡二次根式。因為被開方數(shù)的因式a-b開不盡方,而且是整式。
(5)是最簡二次根式。因為被開方數(shù)的因式5x開不盡方,而且是整式。
(6)不是最簡二次根式。因為被開方數(shù)中的因數(shù)8=22·2,含有開得盡的因數(shù)22。
指出:從(1),(2),(6)題可以看到如下兩個結(jié)論。
1、在二次根式的被開方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡二次根式;
2、在二次根式的被開方數(shù)中的每一個因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡二次根式。
例2 把下列各式化為最簡二次根式:
分析:把被開方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)
例3 把下列各式化成最簡二次根式:
分析:題(1)的被開方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡二次根式。
題(2)及題(3)的被開方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。
通過例2、例3,請同學(xué)們總結(jié)出把二次根式化成最簡二次根式的方法。
答:如果被開方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫成分式的形式,然后利用分母有理化化簡。
如果被開方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開得盡方的因式或因數(shù)開出來,從而將式子化簡。
a、2 b、3
c、1 d、0
3、把下列各式化成最簡二次根式:
答案:
1、b
2、b
1、最簡二次根式必須滿足兩個條件:
(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式。
2、把一個式子化為最簡二次根式的方法是:
(2)如果被開方數(shù)含有分母,應(yīng)去掉分母的根號。
1、把下列各式化成最簡二次根式:
2、把下列各式化成最簡二次根式:
二次根式教學(xué)設(shè)計一等獎篇九
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會進行簡單的二次根式的除法運算;
(3)理解最簡二次根式的概念
2學(xué)情分析
本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算。教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運算過程,估計運算結(jié)果,明確運算方向。
3重點難點
重點:二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).
難點:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。
4教學(xué)過程
4。1第一學(xué)時
教學(xué)活動
活動1【導(dǎo)入】復(fù)習(xí)提問,探究規(guī)律
問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動學(xué)生回答。
【設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.
2.觀察思考,理解法則
問題2教材第8頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。
問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。
【設(shè)計意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運算時出現(xiàn)錯誤。
問題4對例題的運算你有什么看法?是如何進行的?
師生活動學(xué)生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。
【設(shè)計意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進行簡單的運算。
問題5對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?
師生活動學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進行二次根式的化簡。
活動2【講授】觀察思考,理解法則
問題2教材第8頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?
師生活動學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。
問題3對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動學(xué)生思考,回答。學(xué)生能說明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。
【設(shè)計意圖】學(xué)生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運算時出現(xiàn)錯誤。
問題4對例題的運算你有什么看法?是如何進行的?
師生活動學(xué)生利用法則直接運算,一般根號下不含分母和開得盡方的因數(shù)。
【設(shè)計意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進行簡單的運算。
問題5對比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒有類似性質(zhì)?
師生活動學(xué)生類比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進行二次根式的化簡。
活動3【活動】例題示范,學(xué)會應(yīng)用
例1計算:(1);(2);(3)。
師生活動提問:你有幾種方法去掉分母中的根號?去分母的依據(jù)分別是什么?
【設(shè)計意圖】通過具體問題,讓學(xué)生在實際運算中培養(yǎng)運算能力,訓(xùn)練運算技能,
問題5你能從例題的解答過程中,總結(jié)一下二次根式的運算結(jié)果有什么特征嗎?
師生活動學(xué)生總結(jié),師生共同補充、完善。要總結(jié)出:
(1)這些根式的被開方數(shù)都不含分母;
(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式;
(3)分母中不含根號;
【設(shè)計意圖】引導(dǎo)學(xué)生及時總結(jié),提出最簡二次根式的概念,要強調(diào),在二次根式的運算中,一般要把最后結(jié)果化為最簡二次根式。
問題6課件展示一組二次根式的計算、化簡題。
【設(shè)計意圖】讓學(xué)生用總結(jié)出的結(jié)論進行二次根式的運算。
活動4【練習(xí)】鞏固概念,學(xué)以致用
例2教材第9頁例7。
再提問章引言中的問題現(xiàn)在能解決了嗎?
【設(shè)計意圖】鞏固性練習(xí),同時培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運算法則解決實際問題的能力。
活動5【測試】目標(biāo)檢測設(shè)計
1.在、、中,最簡二次根式為。
【設(shè)計意圖】考查對最簡二次根式的概念的理解。
2.化簡下列各式為最簡二次根式:;。
【設(shè)計意圖】復(fù)習(xí)二次根式的運算法則和運算性質(zhì)。鼓勵學(xué)生用不同方法進行計算。對于分母含二次根式的處理,要結(jié)合整式的乘法公式進行計算。
3.化簡:(1);(2)。
【設(shè)計意圖】綜合運用二次根式的概念、性質(zhì)和運算法則進行二次根式的運算。
活動6【作業(yè)】布置作業(yè)
教科書第10頁練習(xí)第1,2,3題;
教科書習(xí)題16。2第10,11題。
文檔為doc格式