在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類(lèi)范文都很熟悉吧。大家想知道怎么樣才能寫(xiě)一篇比較優(yōu)質(zhì)的范文嗎?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來(lái)看一看吧。
二次根式教學(xué)設(shè)計(jì)一等獎(jiǎng)篇一
1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;
2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
教學(xué)重點(diǎn)
最簡(jiǎn)二次根式的定義。
教學(xué)難點(diǎn)
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
教學(xué)過(guò)程
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?
化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。
3.啟發(fā)學(xué)生回答:
二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
3.例題:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
4.總結(jié)
把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
二次根式教學(xué)設(shè)計(jì)一等獎(jiǎng)篇二
1.了解二次根式的意義;
2.掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;
3.掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4.通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;
5.通過(guò)二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):(1)二次根的意義;(2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過(guò)程
(一)復(fù)習(xí)提問(wèn)
1.什么叫平方根、算術(shù)平方根?
2.說(shuō)出下列各式的意義,并計(jì)算:
通過(guò)練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念。
觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,
表示的是算術(shù)平方根。
(二)引入新課
我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:
新課:二次根式
定義:式子叫做二次根式。
對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問(wèn)題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a0時(shí)才叫二次根式,是二次根式嗎?
若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的外在形態(tài).請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
二次根式教學(xué)設(shè)計(jì)一等獎(jiǎng)篇三
一、案例背景:
本節(jié)是九年級(jí)上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對(duì)代數(shù)式的進(jìn)一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過(guò)程及對(duì)二次根式的理解。掌握求二次根式的值和二次根式根號(hào)內(nèi)字母的取值范圍。為以后的運(yùn)用二次根式的運(yùn)算解決實(shí)際問(wèn)題打好基礎(chǔ)。
二、案例描述:
1、學(xué)習(xí)任務(wù)分析:
通過(guò)對(duì)數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵(lì)學(xué)生經(jīng)歷觀察、歸納、類(lèi)比等方法理解二次根式的概念。在解決實(shí)際問(wèn)題的時(shí)候,注意轉(zhuǎn)化思想的滲透。體會(huì)分析問(wèn)題、解決問(wèn)題的方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。比如求二次根式根號(hào)內(nèi)的字母的取值范圍,就是將問(wèn)題轉(zhuǎn)化為不等式來(lái)解決。注意學(xué)生數(shù)學(xué)書(shū)寫(xiě)格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過(guò)的知識(shí)導(dǎo)入新課。設(shè)計(jì)合作學(xué)習(xí)活動(dòng),引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實(shí)際問(wèn)題的過(guò)程,真正把學(xué)生放到主體位置。
2、學(xué)生的認(rèn)知起點(diǎn)分析:
學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過(guò)程做好準(zhǔn)備。另外,學(xué)生對(duì)數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過(guò)程,引導(dǎo)學(xué)生對(duì)二次根式概念的理解。
案例反思:
以往對(duì)這類(lèi)問(wèn)題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來(lái)。采取的措施是全班舉手勢(shì)回答,可以做二次根式的被開(kāi)方數(shù)舉“布”,若不能舉“拳頭”。使班級(jí)能夠全面參與,避免集體回答所體現(xiàn)不出的問(wèn)題。
2.合作活動(dòng):
第一位同學(xué)——出題者:請(qǐng)你按表中的要求寫(xiě)完后,按順時(shí)針?lè)较蚪唤o下一位同學(xué);
第二位同學(xué)——解題者:請(qǐng)你按表中的要求解完后,按順時(shí)針?lè)较蚪唤o下一位同學(xué);
第四位同學(xué)——復(fù)查者:請(qǐng)你一定要把好關(guān)哦!
出題者姓名: 解題者姓名:
第一個(gè)二次根式: 1.要使式子的值為實(shí)數(shù),求x的取值范圍.2.寫(xiě)出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。3.寫(xiě)出x的一個(gè)值,使式子的值為無(wú)理數(shù),并求出這個(gè)無(wú)理數(shù)。
第二個(gè)二次根式: 1.要使式子的值為實(shí)數(shù),求x的取值范圍。2.寫(xiě)出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。3.寫(xiě)出x的一個(gè)值,使式子的值為無(wú)理數(shù),并求出這個(gè)無(wú)理數(shù)。
批改者姓名: 復(fù)查者姓名:
《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位--學(xué)生是學(xué)習(xí)的主人,同時(shí),教師的地位、角色發(fā)生了變化,從 “ 主導(dǎo) ” 變成了 “學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者和合作者 ”。合作活動(dòng)的安排就是對(duì)這一課程標(biāo)準(zhǔn)的體現(xiàn)。
二次根式教學(xué)設(shè)計(jì)一等獎(jiǎng)篇四
1、通過(guò)二次根式混合運(yùn)算的學(xué)習(xí),進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,會(huì)進(jìn)行二次根式的混合運(yùn)算。
2、在進(jìn)行二次根式混合運(yùn)算的過(guò)程中,體會(huì)類(lèi)比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。
教學(xué)重點(diǎn):二次根式混合運(yùn)算算理的理解。
教學(xué)難點(diǎn):類(lèi)比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。
教學(xué)過(guò)程:
《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書(shū)準(zhǔn)備,然后巡回指導(dǎo),了解情況、)
練習(xí)提綱:《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
1、學(xué)生匯報(bào)解題過(guò)程,生說(shuō)師寫(xiě);
2、發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善;
3、師畫(huà)龍點(diǎn)睛強(qiáng)調(diào):
(1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類(lèi)比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。
(先讓學(xué)生獨(dú)立完成,老師做必要的板書(shū)準(zhǔn)備后巡回指導(dǎo),了解情況; 然后讓有一定問(wèn)題的學(xué)生匯報(bào)展示,發(fā)動(dòng)學(xué)生評(píng)價(jià)完善,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法。)
《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒(méi)說(shuō)到的,老師補(bǔ)充。)
《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
二次根式教學(xué)設(shè)計(jì)一等獎(jiǎng)篇五
課時(shí):1課時(shí)
課型:新授課
教學(xué)目標(biāo):
1.知識(shí)目標(biāo):二次根式的加減法運(yùn)算
2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過(guò)二次根式的加減法運(yùn)算解決實(shí)際問(wèn)題。
3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。
重難點(diǎn)分析:
重點(diǎn):能熟練進(jìn)行二次根式的加減運(yùn)算。
難點(diǎn):正確合并被開(kāi)方數(shù)相同的二次根式,二次根式加減法的實(shí)際應(yīng)用。
教學(xué)關(guān)鍵:通過(guò)復(fù)習(xí)舊知識(shí),運(yùn)用類(lèi)比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問(wèn)題激發(fā)學(xué)生求知欲;通過(guò)學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個(gè)學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。
運(yùn)用教具:小黑板等。
教學(xué)過(guò)程:
問(wèn)題與情景
師生活動(dòng)
設(shè)計(jì)目的
活動(dòng)一:
情景引入,導(dǎo)學(xué)展示
1.把下列二次根式化為最簡(jiǎn)二次根式上述兩組二次根式,有什么特點(diǎn)?
這道題是舊知識(shí)的回顧,老師可以找同學(xué)直接回答。對(duì)于問(wèn)題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。教師傾聽(tīng)學(xué)生的交流,指導(dǎo)學(xué)生探究。
問(wèn):什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。
由此也可以看到二次根式的加減只有通過(guò)找出被開(kāi)方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。
加強(qiáng)新舊知識(shí)的聯(lián)系。通過(guò)觀察,初步認(rèn)識(shí)同類(lèi)二次根式。
二次根式教學(xué)設(shè)計(jì)一等獎(jiǎng)篇六
1、了解二次根式的意義;
2、掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;
5、通過(guò)二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。
重點(diǎn):
(1)二次根的意義;
(2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的取值范圍。
啟發(fā)式、講練結(jié)合。
(一)復(fù)習(xí)提問(wèn)
1、什么叫平方根、算術(shù)平方根?
2、說(shuō)出下列各式的意義,并計(jì)算:
通過(guò)練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念。
觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,表示的是算術(shù)平方根。
(二)引入新課
我們已遇到的這樣的式子是我們這節(jié)課研究的`內(nèi)容,引出:
新課:二次根式
定義:式子叫做二次根式。
對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問(wèn)題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a0時(shí)才叫二次根式,是二次根式嗎?
若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的外在形態(tài)、請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
二次根式教學(xué)設(shè)計(jì)一等獎(jiǎng)篇七
1、通過(guò)二次根式混合運(yùn)算的學(xué)習(xí),進(jìn)一步了解二次根式運(yùn)算法則,知道二次根式混合運(yùn)算順序,會(huì)進(jìn)行二次根式的混合運(yùn)算。
2、在進(jìn)行二次根式混合運(yùn)算的過(guò)程中,體會(huì)類(lèi)比思想,逐步養(yǎng)成認(rèn)真仔細(xì)的學(xué)習(xí)品質(zhì),進(jìn)一步提高運(yùn)算能力。
教學(xué)重點(diǎn):二次根式混合運(yùn)算算理的理解。
教學(xué)難點(diǎn):類(lèi)比整式運(yùn)算準(zhǔn)確快速的進(jìn)行二次根式的混合運(yùn)算。
教學(xué)過(guò)程:
《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
(學(xué)生完成練習(xí)提綱,可以討論,老師做必要的板書(shū)準(zhǔn)備,然后巡回指導(dǎo),了解情況、)
練習(xí)提綱:《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
1、學(xué)生匯報(bào)解題過(guò)程,生說(shuō)師寫(xiě);
2、發(fā)動(dòng)其他學(xué)生評(píng)價(jià)補(bǔ)充完善;
3、師畫(huà)龍點(diǎn)睛強(qiáng)調(diào):
(1)二次根式混合運(yùn)算的運(yùn)算順序跟有理數(shù)運(yùn)算順序一樣,先乘方,再乘除,最后加減。
(2)二次根式混合運(yùn)算與整式的運(yùn)算有很多相似之處,因此可類(lèi)比整式的運(yùn)算進(jìn)行二次根式的混合運(yùn)算。
(先讓學(xué)生獨(dú)立完成,老師做必要的板書(shū)準(zhǔn)備后巡回指導(dǎo),了解情況;然后讓有一定問(wèn)題的學(xué)生匯報(bào)展示,發(fā)動(dòng)學(xué)生評(píng)價(jià)完善,老師強(qiáng)調(diào)關(guān)鍵地方,總結(jié)思想方法。)
《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
本節(jié)課你有哪些收獲?還有什么要提醒同學(xué)們注意的。(學(xué)生總結(jié),百花齊放,老師不做限定,沒(méi)說(shuō)到的,老師補(bǔ)充。)
《二次根式混合運(yùn)算習(xí)題課》教學(xué)設(shè)計(jì)-楊桂花
二次根式教學(xué)設(shè)計(jì)一等獎(jiǎng)篇八
1、使學(xué)生理解最簡(jiǎn)二次根式的概念;
2、掌握把二次根式化為最簡(jiǎn)二次根式的方法。
重點(diǎn):化二次根式為最簡(jiǎn)二次根式的方法。
難點(diǎn):最簡(jiǎn)二次根式概念的理解。
計(jì)算:
我們?cè)倏聪旅娴膯?wèn)題:
簡(jiǎn),得到
從上面例子可以看出,如果把二次根式先進(jìn)行化簡(jiǎn),會(huì)對(duì)解決問(wèn)題帶來(lái)方便。
答:
1、被開(kāi)方數(shù)的因數(shù)是整數(shù)或整式;
2、被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。
滿足上面兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式。
例1 試判斷下列各式中哪些是最簡(jiǎn)二次根式,哪些不是?為什么?
解
(1)不是最簡(jiǎn)二次根式。因?yàn)閍3=a2·a,而a2可以開(kāi)方,即被開(kāi)方數(shù)中有開(kāi)得盡方的因式。整數(shù)。
(3)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式x2+y2開(kāi)不盡方,而且是整式。
(4)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式a-b開(kāi)不盡方,而且是整式。
(5)是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)的因式5x開(kāi)不盡方,而且是整式。
(6)不是最簡(jiǎn)二次根式。因?yàn)楸婚_(kāi)方數(shù)中的因數(shù)8=22·2,含有開(kāi)得盡的因數(shù)22。
指出:從(1),(2),(6)題可以看到如下兩個(gè)結(jié)論。
1、在二次根式的被開(kāi)方數(shù)中,只要含有分?jǐn)?shù)或小數(shù),就不是最簡(jiǎn)二次根式;
2、在二次根式的被開(kāi)方數(shù)中的每一個(gè)因式(或因數(shù)),如果冪的指數(shù)等于或大于2,也不是最簡(jiǎn)二次根式。
例2 把下列各式化為最簡(jiǎn)二次根式:
分析:把被開(kāi)方數(shù)分解因式或因數(shù),再利用積的算術(shù)平方根的性質(zhì)
例3 把下列各式化成最簡(jiǎn)二次根式:
分析:題(1)的被開(kāi)方數(shù)是帶分?jǐn)?shù),應(yīng)把它變成假分?jǐn)?shù),然后將分母有理化,把原式化成最簡(jiǎn)二次根式。
題(2)及題(3)的被開(kāi)方數(shù)是分式,先應(yīng)用商的算術(shù)平方根的性質(zhì)把原式表示為兩個(gè)根式的商的形式,再把分母有理化,把原式化成最簡(jiǎn)二次根式。
通過(guò)例2、例3,請(qǐng)同學(xué)們總結(jié)出把二次根式化成最簡(jiǎn)二次根式的方法。
答:如果被開(kāi)方數(shù)是分式或分?jǐn)?shù)(包括小數(shù))先利用商的算術(shù)平方根的性質(zhì),把它寫(xiě)成分式的形式,然后利用分母有理化化簡(jiǎn)。
如果被開(kāi)方數(shù)是整式或整數(shù),先把它分解因式或分解因數(shù),然后把開(kāi)得盡方的因式或因數(shù)開(kāi)出來(lái),從而將式子化簡(jiǎn)。
a、2 b、3
c、1 d、0
3、把下列各式化成最簡(jiǎn)二次根式:
答案:
1、b
2、b
1、最簡(jiǎn)二次根式必須滿足兩個(gè)條件:
(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。
2、把一個(gè)式子化為最簡(jiǎn)二次根式的方法是:
(2)如果被開(kāi)方數(shù)含有分母,應(yīng)去掉分母的根號(hào)。
1、把下列各式化成最簡(jiǎn)二次根式:
2、把下列各式化成最簡(jiǎn)二次根式:
二次根式教學(xué)設(shè)計(jì)一等獎(jiǎng)篇九
(1)利用歸納類(lèi)比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算;
(3)理解最簡(jiǎn)二次根式的概念
2學(xué)情分析
本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或容易失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來(lái)進(jìn)行。二次根式的除法與分式的運(yùn)算類(lèi)似,如果分子、分母中含有相同的因式,可以直接約去,以簡(jiǎn)化運(yùn)算。教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類(lèi)習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過(guò)程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向。
3重點(diǎn)難點(diǎn)
重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì).
難點(diǎn):二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用。
4教學(xué)過(guò)程
4。1第一學(xué)時(shí)
教學(xué)活動(dòng)
活動(dòng)1【導(dǎo)入】復(fù)習(xí)提問(wèn),探究規(guī)律
問(wèn)題1二次根式的乘法法則是什么內(nèi)容?化簡(jiǎn)二次根式的一般步驟怎樣?
師生活動(dòng)學(xué)生回答。
【設(shè)計(jì)意圖】讓學(xué)生回憶探究乘法法則的過(guò)程,類(lèi)比該過(guò)程,學(xué)生可以探究除法法則.
2.觀察思考,理解法則
問(wèn)題2教材第8頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?
師生活動(dòng)學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。
問(wèn)題3對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動(dòng)學(xué)生思考,回答。學(xué)生能說(shuō)明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。
【設(shè)計(jì)意圖】學(xué)生通過(guò)自主探究,采用類(lèi)比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。
問(wèn)題4對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?
師生活動(dòng)學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開(kāi)得盡方的因數(shù)。
【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算。
問(wèn)題5對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒(méi)有類(lèi)似性質(zhì)?
師生活動(dòng)學(xué)生類(lèi)比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。
活動(dòng)2【講授】觀察思考,理解法則
問(wèn)題2教材第8頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?
師生活動(dòng)學(xué)生回答,給出正確答案后,教師引導(dǎo)學(xué)生思考,并總結(jié)二次根式除法法則:。
問(wèn)題3對(duì)比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?
師生活動(dòng)學(xué)生思考,回答。學(xué)生能說(shuō)明根據(jù)分?jǐn)?shù)的意義知道,分母不為零就可以了。
【設(shè)計(jì)意圖】學(xué)生通過(guò)自主探究,采用類(lèi)比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復(fù)雜的二次根式的運(yùn)算時(shí)出現(xiàn)錯(cuò)誤。
問(wèn)題4對(duì)例題的運(yùn)算你有什么看法?是如何進(jìn)行的?
師生活動(dòng)學(xué)生利用法則直接運(yùn)算,一般根號(hào)下不含分母和開(kāi)得盡方的因數(shù)。
【設(shè)計(jì)意圖】讓學(xué)生初步利用二次根式的性質(zhì)、乘除法法則進(jìn)行簡(jiǎn)單的運(yùn)算。
問(wèn)題5對(duì)比積的算術(shù)平方根的性質(zhì),商的算術(shù)平方根有沒(méi)有類(lèi)似性質(zhì)?
師生活動(dòng)學(xué)生類(lèi)比地發(fā)現(xiàn),商的算術(shù)平方根等于算術(shù)平方根的商,即。利用該性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。
活動(dòng)3【活動(dòng)】例題示范,學(xué)會(huì)應(yīng)用
例1計(jì)算:(1);(2);(3)。
師生活動(dòng)提問(wèn):你有幾種方法去掉分母中的根號(hào)?去分母的依據(jù)分別是什么?
【設(shè)計(jì)意圖】通過(guò)具體問(wèn)題,讓學(xué)生在實(shí)際運(yùn)算中培養(yǎng)運(yùn)算能力,訓(xùn)練運(yùn)算技能,
問(wèn)題5你能從例題的解答過(guò)程中,總結(jié)一下二次根式的運(yùn)算結(jié)果有什么特征嗎?
師生活動(dòng)學(xué)生總結(jié),師生共同補(bǔ)充、完善。要總結(jié)出:
(1)這些根式的被開(kāi)方數(shù)都不含分母;
(2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式;
(3)分母中不含根號(hào);
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),提出最簡(jiǎn)二次根式的概念,要強(qiáng)調(diào),在二次根式的運(yùn)算中,一般要把最后結(jié)果化為最簡(jiǎn)二次根式。
問(wèn)題6課件展示一組二次根式的計(jì)算、化簡(jiǎn)題。
【設(shè)計(jì)意圖】讓學(xué)生用總結(jié)出的結(jié)論進(jìn)行二次根式的運(yùn)算。
活動(dòng)4【練習(xí)】鞏固概念,學(xué)以致用
例2教材第9頁(yè)例7。
再提問(wèn)章引言中的問(wèn)題現(xiàn)在能解決了嗎?
【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)培養(yǎng)學(xué)生應(yīng)用二次根式的乘除運(yùn)算法則解決實(shí)際問(wèn)題的能力。
活動(dòng)5【測(cè)試】目標(biāo)檢測(cè)設(shè)計(jì)
1.在、、中,最簡(jiǎn)二次根式為。
【設(shè)計(jì)意圖】考查對(duì)最簡(jiǎn)二次根式的概念的理解。
2.化簡(jiǎn)下列各式為最簡(jiǎn)二次根式:;。
【設(shè)計(jì)意圖】復(fù)習(xí)二次根式的運(yùn)算法則和運(yùn)算性質(zhì)。鼓勵(lì)學(xué)生用不同方法進(jìn)行計(jì)算。對(duì)于分母含二次根式的處理,要結(jié)合整式的乘法公式進(jìn)行計(jì)算。
3.化簡(jiǎn):(1);(2)。
【設(shè)計(jì)意圖】綜合運(yùn)用二次根式的概念、性質(zhì)和運(yùn)算法則進(jìn)行二次根式的運(yùn)算。
活動(dòng)6【作業(yè)】布置作業(yè)
教科書(shū)第10頁(yè)練習(xí)第1,2,3題;
教科書(shū)習(xí)題16。2第10,11題。
文檔為doc格式