總結(jié)的選材不能求全貪多、主次不分,要根據(jù)實際情況和總結(jié)的目的,把那些既能顯示本單位、本地區(qū)特點,又有一定普遍性的材料作為重點選用,寫得詳細、具體。那么我們該如何寫一篇較為完美的總結(jié)呢?以下是小編精心整理的總結(jié)范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學(xué)知識點總結(jié)歸納手抄報篇一
動點的軌跡方程動點的軌跡方程:
在直角坐標系中,動點所經(jīng)過的軌跡用一個二元方程f(x,y)=0表示出來。
求動點的軌跡方程的基本方法:
直接法、定義法、相關(guān)點法、參數(shù)法、交軌法等。
用直接法求動點軌跡一般有建系,設(shè)點,列式,化簡,證明五個步驟,最后的證明可以省略,但要注意“挖”與“補”。求軌跡方程一般只要求出方程即可,求軌跡卻不僅要求出方程而且要說明軌跡是什么。
動點所滿足的條件不易表述或求出,但形成軌跡的動點p(x,y)卻隨另一動點q(x′,y′)的運動而有規(guī)律的運動,且動點q的軌跡為給定或容易求得,則可先將x′,y′表示為x,y的式子,再代入q的軌跡方程,然而整理得p的軌跡方程,代入法也稱相關(guān)點法。一般地:定比分點問題,對稱問題或能轉(zhuǎn)化為這兩類的軌跡問題,都可用相關(guān)點法。
求軌跡方程有時很難直接找到動點的橫坐標、縱坐標之間的關(guān)系,則可借助中間變量(參數(shù)),使x,y之間建立起聯(lián)系,然而再從所求式子中消去參數(shù),得出動點的軌跡方程。用什么變量為參數(shù),要看動點隨什么量的變化而變化,常見的參數(shù)有:斜率、截距、定比、角、點的坐標等。要特別注意消參前后保持范圍的等價性。多參問題中,根據(jù)方程的觀點,引入n個參數(shù),需建立n+1個方程,才能消參(特殊情況下,能整體處理時,方程個數(shù)可減少)。
求兩動曲線交點軌跡時,可由方程直接消去參數(shù),例如求兩動直線的交點時常用此法,也可以引入?yún)?shù)來建立這些動曲線的聯(lián)系,然而消去參數(shù)得到軌跡方程??梢哉f是參數(shù)法的一種變種。用交軌法求交點的軌跡方程時,不一定非要求出交點坐標,只要能消去參數(shù),得到交點的兩個坐標間的關(guān)系即可。交軌法實際上是參數(shù)法中的一種特殊情況。
(l)建系,設(shè)點建立適當?shù)淖鴺讼?,設(shè)曲線上任意一點的坐標為m(x,y);
(2)寫集合寫出符合條件p的點m的集合p(m);
(3)列式用坐標表示p(m),列出方程f(x,y)=0;
(4)化簡化方程f(x,y)=0為最簡形式;
(5)證明證明以化簡后的方程的解為坐標的點都是曲線上的點,
數(shù)學(xué)知識點總結(jié)歸納手抄報篇二
有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識、基本技能和基本方法的學(xué)習與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。因此,同學(xué)們應(yīng)從高一開始,增強自己從課本入手進行研究的意識??梢园衙織l定理、每道例題都當作習題,認真地重證、重解,并適當加些批注,特別是通過對典型例題的講解分析,最后要抽象出解決這類問題的數(shù)學(xué)思想和方法,并做好書面的解題后的反思,總結(jié)出解題的一般規(guī)律和特殊規(guī)律,以便推廣和靈活運用。另外,學(xué)生要盡可能獨立解題,因為求解過程,也是培養(yǎng)分析問題和解決問題能力的一個過程,同時更是一個研究過程。
首先,在課堂教學(xué)中培養(yǎng)好的聽課習慣是很重要的。當然聽是主要的,聽能使注意力集中,要把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應(yīng)適當?shù)赜心康男缘挠浐霉P記,領(lǐng)會課上老師的主要精神與意圖??茖W(xué)的記筆記可以提高45分鐘課堂效益。
其次,要提高數(shù)學(xué)能力,當然是通過課堂來提高,要充分利用好課堂這塊陣地,學(xué)習數(shù)學(xué)的過程是活的,老師教學(xué)的對象也是活的,都在隨著教學(xué)過程的發(fā)展而變化,尤其是當老師注重能力教學(xué)的時候,教材是反映不出來的。數(shù)學(xué)能力是隨著知識的發(fā)生而同時形成的,無論是形成一個概念,掌握一條法則,會做一個習題,都應(yīng)該從不同的能力角度來培養(yǎng)和提高。課堂上通過老師的教學(xué),理解所學(xué)內(nèi)容在教材中的地位,弄清與前后知識的聯(lián)系等,只有把握住教材,才能掌握學(xué)習的主動。
最后,在數(shù)學(xué)課堂中,老師一般少不了提問與板演,有時還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價值的。對于那些典型問題,帶有普遍性的問題都必須及時解決,不能把問題的結(jié)癥遺留下來,甚至沉淀下來,有價值的問題要及時抓住,遺留問題要有針對性地補,注重實效。
一個人不斷接受新知識,不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高。"不會總結(jié)的同學(xué),他的能力就不會提高,挫折經(jīng)驗是成功的基石。"自然界適者生存的生物進化過程便是最好的例證。學(xué)習要經(jīng)常總結(jié)規(guī)律,目的就是為了更一步的發(fā)展。通過與老師、同學(xué)平時的接觸交流,逐步總結(jié)出一般性的學(xué)習步驟,它包括:制定計劃、課前自學(xué)、專心上課、及時復(fù)習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習幾個方面,簡單概括為四個環(huán)節(jié)(預(yù)習、上課、整理、作業(yè))和一個步驟(復(fù)習總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。堅持“兩先兩后一小結(jié)”(先預(yù)習后聽課,先復(fù)習后做作業(yè),寫好每個單元的總結(jié))的學(xué)習習慣。
數(shù)學(xué)知識點總結(jié)歸納手抄報篇三
32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角.異角化同角,異名化同名,高次化低次)
33.反正弦、反余弦、反正切函數(shù)的取值范圍分別是
34.你還記得某些特殊角的三角函數(shù)值嗎?
36.函數(shù)的圖象的平移,方程的平移以及點的平移公式易混:
(1)函數(shù)的圖象的平移為“左+右-,上+下-”;如函數(shù)的圖象左移2個單位且下移3個單位得到的圖象的解析式為,即.
(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為,即.
(3)點的平移公式:點按向量平移到點,則.
37.在三角函數(shù)中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數(shù)值,再判定角的范圍)
38.形如的周期都是,但的周期為。
39.正弦定理時易忘比值還等于2r.
數(shù)學(xué)知識點總結(jié)歸納手抄報篇四
(1)一位數(shù)的乘、除法。一個乘數(shù)是一位數(shù)的乘法(另一個乘數(shù)一般不超過三位數(shù))。0的乘法。連乘。除數(shù)是一位數(shù)的除法。0除以一個數(shù)。用乘法驗算除法。連除。
(2)兩位數(shù)的乘、除法。一個乘數(shù)是兩位數(shù)的乘法(另一個乘數(shù)一般不超過三位數(shù))。乘數(shù)末尾有0的簡便算法。乘法驗算。除數(shù)是兩位數(shù)的除法。連乘、連除的簡便算法。
(3)四則混合運算。兩步計算的式題。小括號的使用。
(4)分數(shù)的初步認識。分數(shù)的初步認識,讀法和寫法??磮D比較分數(shù)的大小。簡單的同分母分數(shù)加、減法。
(二)量與計量千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。
(三)幾何初步知識長方形和正方形的特征。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。
(四)應(yīng)用題常見的數(shù)量關(guān)系。解答兩步計算的應(yīng)用題。
(五)實踐活動聯(lián)系周圍接觸到的事物組織活動。例如記錄10天內(nèi)的天氣情況,分類整理,并作簡單分析。
數(shù)學(xué)知識點總結(jié)歸納手抄報篇五
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),要通過一題聯(lián)想到很多題。
你要著重研究解題的思維過程,弄清基本數(shù)學(xué)知識和基本數(shù)學(xué)思想在解題中的意義和作用,研究運用不同的思維方法解決同一數(shù)學(xué)問題的多條途徑,在分析解決問題的過程中既構(gòu)建知識的橫向聯(lián)系又養(yǎng)成多角度思考問題的習慣。
一節(jié)課與其抓緊時間大汗淋淋地做二、三十道考查思路重復(fù)的題,不如深入透徹地掌握一道典型題。
例如深入理解一個概念的多種內(nèi)涵,對一個典型題,盡力做到從多條思路用多種方法處理,即一題多解。
對具有共性的問題要努力摸索規(guī)律,即多題一解。不斷改變題目的條件,從各個側(cè)面去檢驗自己的知識,即一題多變。
一道題的價值不在于做對、做會,而在于你明白了這題想考你什么。
從這個角度去領(lǐng)悟題,不僅可以快速的找到解題的突破口,而且不容易進入出題老師設(shè)置的陷阱。
每次考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤在今后的考試中重現(xiàn)。大家第一次月考基本結(jié)束了,可以借助第一次月考的試卷對自己進行一下分析:
平時注意把錯題記下來,做錯題筆記包括三個方面:
(1)記下錯誤是什么,最好用紅筆劃出。
(2)錯誤原因是什么,從審題、題目歸類、重現(xiàn)知識和找出答案四個環(huán)節(jié)來分析。
(3)錯誤糾正方法及注意事項。根據(jù)錯誤原因的分析提出糾正方法并提醒自己下次碰到類似的情況應(yīng)注意些什么。
你若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么在中考時發(fā)生錯誤的概率就會大大減少。
好的習慣終生受益,不好的習慣終生后悔、吃虧。如“審題之錯”是否出在急于求成?
可采取“一慢一快”戰(zhàn)術(shù),即審題要慢,要看清楚,步驟要到位,動作要快,步步為營,穩(wěn)中求快,立足于一次成功,不要養(yǎng)成唯恐做不完,匆匆忙忙搶著做,寄希望于檢查的壞習慣。
另外將平常的考試看成是積累考試經(jīng)驗的重要途徑,把平時考試當作中考,從各方面不斷的調(diào)試,逐步適應(yīng)。注意書寫規(guī)范,重要步驟不能丟,丟步驟等于丟分。
根據(jù)解答題評卷實行“分段評分”的特點,你不妨做個心理換位,根據(jù)自己的實際情況,從平時做作業(yè)“全做全對”的要求中,轉(zhuǎn)移到“立足于完成部分題目或題目的部分”上來,不要在一道題上花費太多時間,有時放棄可能是最佳選擇。
眼看著期中考試就要來臨,要想提升自己的數(shù)學(xué)成績,現(xiàn)在開始就要改變了。雖說期中考試只是檢驗這半學(xué)期知識掌握情況的一個手段,但考得好和考得不好,對孩子以后的學(xué)習有很大的影響。
平常學(xué)得扎實的同學(xué)到了這時候是充滿信心;平常學(xué)得不夠好的同學(xué)則是戰(zhàn)戰(zhàn)兢兢。
數(shù)學(xué)知識點總結(jié)歸納手抄報篇六
(1)20以內(nèi)數(shù)的認識。加法和減法。
數(shù)數(shù)。數(shù)的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合運算。
(2)100以內(nèi)數(shù)的認識。加法和減法。數(shù)數(shù)。個位、十位。數(shù)的順序、大小、讀法和寫法。
兩位數(shù)加、減整十數(shù)和兩位數(shù)加、減一位數(shù)的口算。兩步計算的加減式題。
(二)量與計量鐘面的認識(整時)。人民幣的認識和簡單計算。
(三)幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
(四)應(yīng)用題
比較容易的加法、減法一步計算的應(yīng)用題。 多和少的應(yīng)用題(抓有效信息的能力)
(五)實踐活動
選擇與生活密切聯(lián)系的內(nèi)容。例如根據(jù)本班男、女生人數(shù),每組人數(shù)分布情況,想到哪些數(shù)學(xué)問題。
數(shù)學(xué)知識點總結(jié)歸納手抄報篇七
空間兩直線的位置關(guān)系:
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;
(2)沒有公共點——平行或異面
數(shù)學(xué)知識點總結(jié)歸納手抄報篇八
很多學(xué)生在上課時候都能認真聽講,對公式和概念等基礎(chǔ)知識有很深的記憶,但在遇到實際問題的時候卻做不出。因此,學(xué)生在課堂上不僅要認真聽講,跟隨老師的思路,還要進行思考,了解解題思路。對于數(shù)學(xué)學(xué)習,最重要的是解題能力和知識運用能力的培養(yǎng)。如果學(xué)生只會記憶公式和概念等基礎(chǔ)知識,而不懂怎么運用這些知識去解答問題,那么他的數(shù)學(xué)學(xué)習能力是非常差的,學(xué)習效率和質(zhì)量也是非常低下。
2、擴寬解題思路
在數(shù)學(xué)教學(xué)中,老師會引導(dǎo)學(xué)生進行思考,從而發(fā)現(xiàn)不同的解題思路。因此,學(xué)生要利用好這些機會,擴寬解題思路,培養(yǎng)自身的思維能力。通過這些方法,學(xué)生可以鍛煉思維能力和應(yīng)變能力,學(xué)會舉一反三,從而提高數(shù)學(xué)成績。
3、利用好錯題集
在學(xué)習過程中,學(xué)生難免會做錯題目,這時候要將錯題進行整合歸納,建立錯題集。借助錯題集,學(xué)生可以知道自己錯誤的原因,掌握正確的.解題方法,從而避免再犯同樣的錯誤。此外,學(xué)習過程中要經(jīng)常翻看錯題集,不斷加深印象,從而達到抬升知識短板、彌補知識漏洞的目的。
數(shù)學(xué)知識點總結(jié)歸納手抄報篇九
高三學(xué)生在上課之前把即將要學(xué)習的內(nèi)容預(yù)習一下,有個大致的了解,等到上課老師講的時候就容易跟上老師的講課速度和思維,也能更好的理解老師講的內(nèi)容,這樣一來很大程度的提高了聽課效率,就不用下課的時候再花費時間和精力去做完成上課應(yīng)該完成的事情了。
2、課后及時復(fù)習
高三數(shù)學(xué)課基本上都是復(fù)習課,復(fù)習課的容量大、內(nèi)容多,只靠上課的時間去掌握上課的內(nèi)容是很難的,因此高三學(xué)生在下課以后,應(yīng)該及時復(fù)習和鞏固上課所學(xué)知識,把應(yīng)該掌握的知識都掌握了,有不明白的地方就及時找老師解惑,千萬不要不懂裝懂,或者是不好意思去問,要知道學(xué)習中的問題是越攢越多的,現(xiàn)在的某一個小問題都會影響到后面的復(fù)習。
至于課后復(fù)習的方法,首先應(yīng)該對上課的內(nèi)容進行回憶,然后結(jié)合例題加深理解,再通過做練習題來鞏固掌握。注意,不管是看例題還是做練習題,都要分析解題的思路,總結(jié)解題方法,這樣才能更好的提高復(fù)習效率。
3、避免一些小錯誤的發(fā)生
高三復(fù)習內(nèi)容多,復(fù)習時間又比較緊張,很多高三學(xué)生為了節(jié)省學(xué)習時間,對于一些小細節(jié)能忽略就忽略。要知道“細節(jié)決定成敗”,學(xué)習中的小細節(jié)往往是決定成績高低的關(guān)鍵因素。因此高三學(xué)生學(xué)習的時候,一定要注意拿些細節(jié),比如:審題時仔細一些、做簡答題時規(guī)范解題步驟和格式等,如果一些小毛病都沒有了,那么影響成績的外在因素就解決了,這時候針對學(xué)習內(nèi)容來提高成績就會容易一些。
數(shù)學(xué)知識點總結(jié)歸納手抄報篇十
2、面積與平方
(1)任意兩個正數(shù)的和的平方,等于這兩個數(shù)的平方和
(2)任意兩個正數(shù)的差的平方,等于這兩個數(shù)的平方和,再減去這兩個數(shù)乘積的2倍
3、平方根
1正數(shù)有兩個平方根,這兩個平方根互為相反數(shù);
2零只有一個平方根,它就是零本身;
3負數(shù)沒有平方根
4、實數(shù)
無限不循環(huán)小數(shù)叫做無理數(shù)
有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù)
5、平方根的運算
6、算術(shù)平方根的性質(zhì)
性質(zhì)1一個非負數(shù)的算術(shù)平方根的平方等于這個數(shù)本身
性質(zhì)2一個數(shù)的平方的算術(shù)平方根等于這個數(shù)的絕對值
7、算術(shù)平方根的乘、除運算
1)算術(shù)平方根的乘法
sqrt(a)?sqrt(b)=sqrt(ab)(a=0,b=0)
2算)術(shù)平方根的除法
sqrt(a)/sqrt(b)=sqrt(a/b)(a=0,b0)
8‘算術(shù)平方根的加、減運算
如果幾個平方根化成最簡平方根以后,被開方數(shù)相同,那么這幾個平方根就叫做同類平方根
9、一元二次方程及其解法
1)一元二次方程
只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2的方程,叫做一元二次方程
2)特殊的一元二次方程的解法
3)一般的一元二次方程的解法——配方法
用配方法解一元二次方程的一般步驟是:
2、移項把常數(shù)項移至方程右邊,將方程化為x^2+px=-q的形式
4、有平方根的定義,可知
(1)當p^2/4-q0時,原方程有兩個實數(shù)根;
(2)當p^2/4-q=0,原方程有兩個相等的實數(shù)根(二重根)
數(shù)學(xué)知識點總結(jié)歸納手抄報篇十一
第五章:
本章重點:一元一次不等式的解法,
本章難點:了解不等式的解集和不等式組的解集的確定,正確運用
不等式基本性質(zhì)3。
本章關(guān)鍵:徹底弄清不等式和等式的基本性質(zhì)的區(qū)別.
(2)不等式的基本性質(zhì),它是解不等式的理論依據(jù).
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(6)一元一次不等式的解集,在數(shù)軸上表示一元一次不等式的解集
(8).利用數(shù)軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數(shù)的值,會檢驗一對數(shù)值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據(jù)給出的應(yīng)用問題,列出相應(yīng)的二元一次方程組或三元一次方程組,從而求出問題的解,并能根據(jù)問題的實際意義,檢查結(jié)果是否合理.
本章的重點是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應(yīng)用問題.
本章的難點是:
1.會用適當?shù)南椒ń舛淮畏匠探M及簡單的三元一次方程組;
2.正確地找出應(yīng)用題中的相等關(guān)系,列出一次方程組.
第七章
本章重點是:整式的乘除運算,特別是對冪的運算及乘法公式的應(yīng)用要達到熟練程度.
本章難點是:對乘法公式結(jié)構(gòu)特征和公式中字母意義的理解及乘法公式的靈活應(yīng)用
1.冪的運算性質(zhì),正確地表述這些性質(zhì),并能運用它們熟練地進行有關(guān)計算.
2.單項式乘以(或除以)單項式,多項式乘以(或除以)單項式,以及多項式乘以多項式的法則,熟練地運用它們進行計算.
3.乘法公式的推導(dǎo)過程,能靈活運用乘法公式進行計算.
4.熟練地運用運算律、運算法則進行運算,
5.體會用字母表示數(shù)和用字母表示式子的意義.通過式的變形,深入理解轉(zhuǎn)化的思想方法.
第八章:
1、認識事物的幾種方法:觀察與實驗歸納與類比猜想與證明生活中的說理數(shù)學(xué)中的說理
2、定義、命題、公理、定理
3、簡單幾何圖形中的推理
4、余角、補交、對頂角
5、平行線的判定
判定:一個公理兩個定理。
公理:兩直線被第三條直線所截,如果同位角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)
定理:內(nèi)錯角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)
定理:同旁內(nèi)角互補(數(shù)量關(guān)系)兩直線平行(位置關(guān)系).
平行線的性質(zhì):
兩直線平行,同位角相等
兩直線平行,內(nèi)錯角相等
兩直線平行,同旁內(nèi)角互補
由圖形的“位置關(guān)系”確定“數(shù)量關(guān)系”
第九章:
重點:因式分解的方法,
難點:分析多項式的特點,選擇適合的分解方法
1.因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運用因式分解解決一些實際問題.(包括圖形習題)
第十章:
重點是:用統(tǒng)計知識解決現(xiàn)實生活中的實際問題.
難點是:用統(tǒng)計知識解決實際問題.
1.統(tǒng)計初步的基本知識,平均數(shù)、中位數(shù)、眾數(shù)等的計算、
2.了解數(shù)據(jù)的收集與整理、繪畫三種統(tǒng)計圖.
3.應(yīng)用統(tǒng)計知識解決實際問題能解決與統(tǒng)計相關(guān)的綜合問題.
數(shù)學(xué)知識點總結(jié)歸納手抄報篇十二
(m,n都是整數(shù))是冪的運算中最基本的法則,在應(yīng)用法則運算時,要注意以下幾點:
b)指數(shù)是1時,不要誤以為沒有指數(shù);
二、冪的乘方與積的乘方
三、同底數(shù)冪的除法
(1)運用法則的前提是底數(shù)相同,只有底數(shù)相同,才能用此法則
(2)底數(shù)可以是具體的數(shù),也可以是單項式或多項式
(3)指數(shù)相減指的是被除式的指數(shù)減去除式的指數(shù),要求差不為負
四、整式的乘法
1、單項式的概念:由數(shù)與字母的乘積構(gòu)成的代數(shù)式叫做單項式。單獨的一個數(shù)或一個字母也是單項式。單項式的數(shù)字因數(shù)叫做單項式的系數(shù),所有字母指數(shù)和叫單項式的次數(shù)。
如:bca22-的系數(shù)為2-,次數(shù)為4,單獨的一個非零數(shù)的次數(shù)是0。
2、多項式:幾個單項式的和叫做多項式。多項式中每個單項式叫多項式的項,次數(shù)項的次數(shù)叫多項式的次數(shù)。
數(shù)學(xué)知識點總結(jié)歸納手抄報篇十三
40.數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定??梢钥闯膳c任意向量平行,但與任意向量都不垂直。
41.數(shù)量積與兩個實數(shù)乘積的區(qū)別:
在實數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出.
已知實數(shù),且,則a=c,但在向量的數(shù)量積中沒有.
在實數(shù)中有,但是在向量的數(shù)量積中,這是因為左邊是與共線的向量,而右邊是與共線的向量.
42.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。