總結(jié)不僅僅是總結(jié)成績,更重要的是為了研究經(jīng)驗,發(fā)現(xiàn)做好工作的規(guī)律,也可以找出工作失誤的教訓(xùn)。這些經(jīng)驗教訓(xùn)是非常寶貴的,對工作有很好的借鑒與指導(dǎo)作用,在今后工作中可以改進(jìn)提高,趨利避害,避免失誤。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的總結(jié)嗎?以下是小編精心整理的總結(jié)范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
高一數(shù)學(xué)知識點總結(jié)歸納篇一
首先,新高一同學(xué)要明確的是:高一數(shù)學(xué)是高中數(shù)學(xué)的重點基礎(chǔ)。剛進(jìn)入高一,有些學(xué)生還不是很適應(yīng),如果直接學(xué)習(xí)高考技巧仿佛是“沒學(xué)好走就想跑”。任何的技巧都是建立在牢牢的基礎(chǔ)知識之上,因此建議高一的學(xué)生多抓基礎(chǔ),多看課本。
在應(yīng)試教育中,只有多記公式,掌握解題技巧,熟悉各種題型,把自己變成一個做題機(jī)器,才能在考試中取得的成績。在高考中只會做題是不行的,一定要在會的基礎(chǔ)上加個“熟練”才行,小題一般要控制在每個兩分鐘左右。
高一數(shù)學(xué)的知識掌握較多,高一試題約占高考得分的70%,一學(xué)年要學(xué)五本書,只要把高一的數(shù)學(xué)掌握牢靠,高二,高三則只是對高一的復(fù)習(xí)與補(bǔ)充,所以進(jìn)入高中后,要盡快適應(yīng)新環(huán)境,上課認(rèn)真聽,多做筆記,一定會學(xué)好數(shù)學(xué)。
因此,新高一同學(xué)應(yīng)該在熟記概念的基礎(chǔ)上,多做練習(xí),穩(wěn)扎穩(wěn)打,只有這樣,才能學(xué)好數(shù)學(xué)。
預(yù)習(xí)是學(xué)好數(shù)學(xué)的必要前提,可謂是“火燒赤壁”所需“東風(fēng)”.總的來說,預(yù)習(xí)可以分為以下2步。
1.預(yù)習(xí)即將學(xué)習(xí)的章節(jié)的課本知識。在預(yù)習(xí)課本的過程中,要將課本中的定義、定理記熟,做到活學(xué)活用。有是要仔細(xì)做課本上的例題以及課后練習(xí),這些基礎(chǔ)性的東西往往是最重要的。
2.自覺完成自學(xué)稿。自學(xué)稿是新課改以來歡迎的學(xué)習(xí)方式!首先應(yīng)將自學(xué)稿上的《預(yù)習(xí)檢測》部分寫完,然后想后看題。在剛開始,可能會有一些不會做,記住不要苦心去鉆研,那樣往往會事倍功半!
聽講是學(xué)好數(shù)學(xué)的重要環(huán)節(jié)。可以這么說,不聽講,就不會有好成績。
1.在上課時,認(rèn)真聽老師講課,積極發(fā)言。在遇到不懂的問題時,做上標(biāo)記,課后及時的向老師請教!
2.記錄往往是一個細(xì)小的環(huán)節(jié)。注意老師重復(fù)的語句,以及寫在黑板上的大量文字(數(shù)學(xué)老師一般不多寫字),及時地用一個小本記錄下來,這樣日積月累,會形成一個知識小冊。
高一數(shù)學(xué)知識點總結(jié)歸納篇二
一個東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。
而整個學(xué)校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。
班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。
解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時,可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。
高一數(shù)學(xué)知識點總結(jié)歸納篇三
復(fù)數(shù)知識點網(wǎng)絡(luò)圖
2、復(fù)數(shù)中的難點
(1)復(fù)數(shù)的向量表示法的運算。對于復(fù)數(shù)的向量表示有些學(xué)生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難。對此應(yīng)認(rèn)真體會復(fù)數(shù)向量運算的幾何意義,對其靈活地加以證明。
(2)復(fù)數(shù)三角形式的乘方和開方。有部分學(xué)生對運算法則知道,但對其靈活地運用有一定的困難,特別是開方運算,應(yīng)對此認(rèn)真地加以訓(xùn)練。
(3)復(fù)數(shù)的輻角主值的求法。
(4)利用復(fù)數(shù)的幾何意義靈活地解決問題。復(fù)數(shù)可以用向量表示,同時復(fù)數(shù)的模和輻角都具有幾何意義,對他們的理解和應(yīng)用有一定難度,應(yīng)認(rèn)真加以體會。
3、復(fù)數(shù)中的重點
(1)理解好復(fù)數(shù)的概念,弄清實數(shù)、虛數(shù)、純虛數(shù)的不同點。
(2)熟練掌握復(fù)數(shù)三種表示法,以及它們間的互化,并能準(zhǔn)確地求出復(fù)數(shù)的模和輻角。復(fù)數(shù)有代數(shù),向量和三角三種表示法。特別是代數(shù)形式和三角形式的互化,以及求復(fù)數(shù)的模和輻角在解決具體問題時經(jīng)常用到,是一個重點內(nèi)容。
(3)復(fù)數(shù)的三種表示法的各種運算,在運算中重視共軛復(fù)數(shù)以及模的有關(guān)性質(zhì)。復(fù)數(shù)的運算是復(fù)數(shù)中的主要內(nèi)容,掌握復(fù)數(shù)各種形式的運算,特別是復(fù)數(shù)運算的幾何意義更是重點內(nèi)容。
(4)復(fù)數(shù)集中一元二次方程和二項方程的解法。
高一數(shù)學(xué)知識點總結(jié)歸納篇四
不過作為集合大小的定義,我們希望能夠比較任意兩個集合的大小。所以,對于任何給定的兩個集合a和b,或者a比b大,或者b比a大,或者一樣大,這三種情況必須有一種正確而且只能有一種正確。這樣的偏序關(guān)系被稱為“全序關(guān)系”。
最后,新的定義必須保持原來有限集合間的大小關(guān)系。有限集合間的大小關(guān)系是很清楚的,所謂的“大”,也就是集合中的元素更多,有五個元素的集合要比有四個元素的集合大,在新的擴(kuò)充了的集合定義中也必須如此。這個要求是理所當(dāng)然的,否則我們沒有理由將新的定義作為老定義的擴(kuò)充。
經(jīng)過精心的整理,有關(guān)“高一數(shù)學(xué)學(xué)習(xí):集合大小定義的基本要求三”的內(nèi)容已經(jīng)呈現(xiàn)給大家,祝大家學(xué)習(xí)愉快!
學(xué)好高中數(shù)學(xué)也需閱讀積累
閱讀,在語文中要抓住精煉的或生動形象的詞與句,而在數(shù)學(xué)中,則應(yīng)抓住關(guān)鍵的詞語。比如在初二課本第一學(xué)期第21章第五節(jié)反比例函數(shù)性質(zhì)的第一條:“當(dāng)k0時,函數(shù)圖像的兩個分支分別在第一、三象限內(nèi),在每個象限內(nèi),自變量x逐漸增大時,y的值則隨著逐漸減小。&rdquo高中歷史;這句話中,關(guān)鍵詞語是“在每個象限內(nèi)”,反比例函數(shù)的圖像為雙曲線,而這個性質(zhì)是對于其中某一分支而言,并不是對整個函數(shù)來說的。所以在做題時,應(yīng)注意到這一點。從這一實例來看,我們不難發(fā)現(xiàn)閱讀時抓住關(guān)鍵詞語的重要性。
積累,在語文中有利于寫作,在數(shù)學(xué)中有利于解題。積累包括兩方面:一、概念知識,二、錯誤的題目。腦子中多一些概念就多了一些思考的方法,多了一些解題的突破口,在做較難的題目時,也就得心應(yīng)手了。積累錯誤的題目,指挑選一些自己平時易錯或難懂的題目,記在本子上,在復(fù)習(xí)時,翻看這本本子就能更加清楚地了解自己在哪些方面還有所欠缺,應(yīng)特別注意。所以積累對學(xué)好數(shù)學(xué)起著極大的作用。
自主復(fù)習(xí)最好各科交替進(jìn)行
大部分區(qū)縣都將實行全區(qū)統(tǒng)考,并將考生成績進(jìn)行大排隊。這次考試將成為考生填報高考志愿的重要參考依據(jù)??忌鷮Υ朔浅V匾?。元旦假期,不少考生計劃把時間都用來補(bǔ)習(xí)薄弱科目。
北京老師王梅生建議,在重點復(fù)習(xí)薄弱學(xué)科的同時,考生也要兼顧其他科目。不要在一大段時間內(nèi)把精力全部用在某一科目上,這樣容易造成頭腦疲勞,影響復(fù)習(xí)效果。考生最好將各科交替進(jìn)行,文理科兼顧,強(qiáng)弱科相間,單科與綜合科目結(jié)合進(jìn)行。
此外,考生最好將各科復(fù)習(xí)時間安排得與考試時間同步。比如,考試第一天上午考語文,下午考數(shù)學(xué),第二天上午考綜合,下午考英語??忌@幾天最好上午復(fù)習(xí)語文與綜合,下午復(fù)習(xí)數(shù)學(xué)與英語,這樣有利于在相應(yīng)的時間對相應(yīng)科目產(chǎn)生興趣,提高興奮點。
提醒注意的是,考生在考前這幾天,不要打亂原有的生物鐘,盡量別開夜車復(fù)習(xí),并注意把學(xué)習(xí)與休息相結(jié)合,保證8小時睡眠和適度體育鍛煉。這樣才能精力充沛,保證復(fù)習(xí)效果。
高一數(shù)學(xué)知識點總結(jié)歸納篇五
兩個平面的位置關(guān)系:
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關(guān)系:
兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內(nèi)有兩條相交直線都平行于另一個平面,那么這兩個平面平行。
兩個平面平行的性質(zhì)定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。
b、相交
二面角
(1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩個平面垂直的性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于交線的直線垂直于另一個平面。
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)
棱錐
棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
(1)側(cè)棱交于一點。側(cè)面都是三角形
正棱錐
正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
高一數(shù)學(xué)知識點總結(jié)歸納篇六
學(xué)習(xí)數(shù)學(xué),掌握基礎(chǔ)很重要,那么如何打好基本功呢?對此我有幾條幾解,同學(xué)們可以參考參考。
第一,做數(shù)學(xué)要運用到很多公式,很多同學(xué)都說公式記不熟,因此我經(jīng)常看到有的同學(xué)拿著一本公式冊子在那里猛地背,這種方法我不太贊同,雖然能背熟公式,但一到做題和實際運用時,就會發(fā)現(xiàn)腦子有點亂,不知道運用哪條公式,而且背熟的公式?jīng)]過幾天可能會忘記,就因為這是硬性記性,不可靠。我認(rèn)為記公式呢,要知道這條公式的原理,最好能把它推一下,做題時即使記不住了,也可舉個例子來推一下,像三角函數(shù)公式有很多,但我認(rèn)為只要記住四條兩角和差的正弦余弦特殊值,有同學(xué)會記亂,但這根本不用刻意去記,做題時如果記不起來了,只要畫幾個特殊直角三角形,所有的特殊值就出來了,但最重要的是同學(xué)們要記住熟能生巧,做題目做多了,公式自然主熟練習(xí),半夜叫醒都能說出來,要想長久記住公式,就必須這樣。
第二,就是計算能力,很多同學(xué)題目會做,但卻因計錯數(shù)而失分,想要改變這種狀況,就必須培養(yǎng)計算能力和養(yǎng)成良好的習(xí)慣,對于計算能力的培養(yǎng),沒有什么秘訣,只能靠多做,還有計算不要把草稿本畫得太花,計算過程要有頭有尾,才不致于計算時不知西東。
以上的方法,同學(xué)們?nèi)绻X得有用,可以試一下,方法是人想出來的,如果同學(xué)們有更好的建議可以提出來,與大家一起分享一下。
高一數(shù)學(xué)知識點總結(jié)歸納篇七
2.應(yīng)用函數(shù)思想解題,確立變量之間的函數(shù)關(guān)系是一關(guān)鍵步驟,大體可分為下面兩個步驟:
(1)根據(jù)題意建立變量之間的函數(shù)關(guān)系式,把問題轉(zhuǎn)化為相應(yīng)的函數(shù)問題;
(2)根據(jù)需要構(gòu)造函數(shù),利用函數(shù)的相關(guān)知識解決問題;
3.函數(shù)與方程是兩個有著密切聯(lián)系的數(shù)學(xué)概念,它們之間相互滲透,很多方程的問題需要用函數(shù)的知識和方法解決,很多函數(shù)的問題也需要用方程的方法的支援,函數(shù)與方程之間的辯證關(guān)系,形成了函數(shù)方程思想。
高一數(shù)學(xué)知識點總結(jié)歸納篇八
(高中函數(shù)定義)設(shè)a,b是兩個非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合a中的任意一個數(shù)x,在集合b中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:a--b為集合a到集合b的一個函數(shù),記作y=f(x),x屬于集合a。其中,x叫作自變量,x的取值范圍a叫作函數(shù)的定義域。
函數(shù)中,應(yīng)變量的取值范圍叫做這個函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合。
(1)化歸法;
(2)圖象法(數(shù)形結(jié)合),學(xué)習(xí)規(guī)律;
(3)函數(shù)單調(diào)性法;
(4)配方法;
(5)換元法;
(6)反函數(shù)法(逆求法);
(7)判別式法;
(8)復(fù)合函數(shù)法;
(9)三角代換法;
(10)基本不等式法等
定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個基本“元件”。平時數(shù)學(xué)中,實行“定義域優(yōu)先”的原則,無可置疑。然而事物均具有二重性,在強(qiáng)化定義域問題的同時,往往就削弱或談化了,對值域問題的探究,造成了一手“硬”一手“軟”,使學(xué)生對函數(shù)的掌握時好時壞,事實上,定義域與值域二者的位置是相當(dāng)?shù)?,絕不能厚此薄皮,何況它們二者隨時處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運算性質(zhì)有時并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強(qiáng)了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認(rèn)識。
“范圍”與“值域”是我們在學(xué)習(xí)中經(jīng)常遇到的兩個概念,許多同學(xué)常常將它們混為一談,實際上這是兩個不同的概念?!爸涤颉笔撬泻瘮?shù)值的集合(即集合中每一個元素都是這個函數(shù)的取值),而“范圍”則只是滿足某個條件的一些值所在的集合(即集合中的元素不一定都滿足這個條件)。也就是說:“值域”是一個“范圍”,而“范圍”卻不一定是“值域”。
高一數(shù)學(xué)知識點總結(jié)歸納篇九
圓錐曲線性質(zhì):
一、圓錐曲線的定義
1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的動點的軌跡叫做橢圓.
2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線.即.
3.圓錐曲線的統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的點的軌跡叫做圓錐曲線.當(dāng)01時為雙曲線.
二、圓錐曲線的方程
1.橢圓:+=1(ab0)或+=1(ab0)(其中,a2=b2+c2)
2.雙曲線:-=1(a0,b0)或-=1(a0,b0)(其中,c2=a2+b2)
3.拋物線:y2=±2px(p0),x2=±2py(p0)
三、圓錐曲線的性質(zhì)
1.橢圓:+=1(ab0)