總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況加以總結(jié)和概括的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯(cuò)誤,提高工作效益,因此,讓我們寫一份總結(jié)吧。寫總結(jié)的時(shí)候需要注意什么呢?有哪些格式需要注意呢?以下我給大家整理了一些優(yōu)質(zhì)的總結(jié)范文,希望對(duì)大家能夠有所幫助。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇一
1.一元二次方程3x2+5x-2=0的常數(shù)項(xiàng)是-2.
2.一元二次方程3x2+4x-2=0的一次項(xiàng)系數(shù)為4,常數(shù)項(xiàng)是-2.
3.一元二次方程3x2-5x-7=0的二次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
1.直角坐標(biāo)系中,點(diǎn)a(3,0)在軸上。
2.直角坐標(biāo)系中,x軸上的任意點(diǎn)的橫坐標(biāo)為0.
3.直角坐標(biāo)系中,點(diǎn)a(1,1)在第一象限。
4.直角坐標(biāo)系中,點(diǎn)a(-2,3)在第四象限。
5.直角坐標(biāo)系中,點(diǎn)a(-2,1)在第二象限。
1.當(dāng)x=2時(shí),函數(shù)=的值為1.
2.當(dāng)x=3時(shí),函數(shù)=的值為1.
3.當(dāng)x=-1時(shí),函數(shù)=的值為1.
1.函數(shù)=-8x是一次函數(shù)。
2.函數(shù)=4x+1是正比例函數(shù)。
3.函數(shù)是反比例函數(shù)。
4.拋物線=-3(x-2)2-5的開口向下。
5.拋物線=4(x-3)2-10的對(duì)稱軸是x=3.
6.拋物線的頂點(diǎn)坐標(biāo)是(1,2)。
7.反比例函數(shù)的圖象在第一、三象限
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
30°=。
260°+cs260°=1.
3.2sin30°+tan45°=2.
45°=1.
60°+sin30°=1.
1.半圓或直徑所對(duì)的圓周角是直角。
2.任意一個(gè)三角形一定有一個(gè)外接圓。
3.在同一平面內(nèi),到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。
4.在同圓或等圓中,相等的圓心角所對(duì)的弧相等。
5.同弧所對(duì)的圓周角等于圓心角的一半。
6.同圓或等圓的半徑相等。
7.過(guò)三個(gè)點(diǎn)一定可以作一個(gè)圓。
8.長(zhǎng)度相等的兩條弧是等弧。
9.在同圓或等圓中,相等的圓心角所對(duì)的弧相等。
10.經(jīng)過(guò)圓心平分弦的直徑垂直于弦。
1.直線與圓有唯一公共點(diǎn)時(shí),叫做直線與圓相切。
2.三角形的外接圓的圓心叫做三角形的外心。
3.弦切角等于所夾的弧所對(duì)的圓心角。
4.三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。
5.垂直于半徑的直線必為圓的切線。
6.過(guò)半徑的外端點(diǎn)并且垂直于半徑的直線是圓的切線。
7.垂直于半徑的直線是圓的切線。
8.圓的切線垂直于過(guò)切點(diǎn)的半徑。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇二
一、重要概念
1.數(shù)的分類及概念數(shù)系表:
說(shuō)明:"分類"的原則:1)相稱(不重、不漏) 2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù):①定義及表示法
②性質(zhì):a.a≠1/a(a≠±1);b.1/a中,a≠0;c.01;a>1時(shí),1/a<1;d.積為1。
4.相反數(shù):①定義及表示法
②性質(zhì):a.a≠0時(shí),a≠-a;b.a與-a在數(shù)軸上的位置;c.和為0,商為-1。
5.數(shù)軸:①定義("三要素")
②作用:a.直觀地比較實(shí)數(shù)的大小;b.明確體現(xiàn)絕對(duì)值意義;c.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
②│a│≥0,符號(hào)"││"是"非負(fù)數(shù)"的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有"││"出現(xiàn),其關(guān)鍵一步是去掉"││"符號(hào)。
二、實(shí)數(shù)的運(yùn)算
1.運(yùn)算法則(加、減、乘、除、乘方、開方)
2.運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]
分配律)
3.運(yùn)算順序:a.高級(jí)運(yùn)算到低級(jí)運(yùn)算;b.(同級(jí)運(yùn)算)從"左"
到"右"(如5÷ ×5);c.(有括號(hào)時(shí))由"小"到"中"到"大"。
三、應(yīng)用舉例(略)
附:典型例題
1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號(hào)。
★重點(diǎn)★代數(shù)式的有關(guān)概念及性質(zhì),代數(shù)式的運(yùn)算
☆內(nèi)容提要☆
一、重要概念
分類:
1.代數(shù)式與有理式
用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨(dú)
的一個(gè)數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運(yùn)算的代數(shù)式叫做有理式。
沒(méi)有除法運(yùn)算或雖有除法運(yùn)算但除式中不含有字母的有理式叫做整式。
有除法運(yùn)算并且除式中含有字母的有理式叫做分式。
3.單項(xiàng)式與多項(xiàng)式
沒(méi)有加減運(yùn)算的整式叫做單項(xiàng)式。(數(shù)字與字母的積-包括單獨(dú)的一個(gè)數(shù)或字母)
幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
說(shuō)明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運(yùn)算,把單項(xiàng)式、多項(xiàng)式區(qū)分開。②進(jìn)行代數(shù)式分類時(shí),是以所給的代數(shù)式為對(duì)象,而非以變形后的代數(shù)式為對(duì)象。劃分代數(shù)式類別時(shí),是從外形來(lái)看。如,
=x, =│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①?gòu)奈恢蒙峡?②從表示的意義上看
5.同類項(xiàng)及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
6.根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運(yùn)算的代數(shù)式叫做無(wú)理式。
注意:①?gòu)耐庑紊吓袛?②區(qū)別:、是根式,但不是無(wú)理式(是無(wú)理數(shù))。
7.算術(shù)平方根
⑴正數(shù)a的正的平方根( [a≥0-與"平方根"的區(qū)別]);
⑵算術(shù)平方根與絕對(duì)值
①聯(lián)系:都是非負(fù)數(shù),=│a│
②區(qū)別:│a│中,a為一切實(shí)數(shù);中,a為非負(fù)數(shù)。
8.同類二次根式、最簡(jiǎn)二次根式、分母有理化
化為最簡(jiǎn)二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號(hào)劃去叫做分母有理化。
9.指數(shù)
⑴ ( -冪,乘方運(yùn)算)
① a>0時(shí),>0;②a<0時(shí),>0(n是偶數(shù)),<0(n是奇數(shù))
⑵零指數(shù):=1(a≠0)
負(fù)整指數(shù):=1/ (a≠0,p是正整數(shù))
二、運(yùn)算定律、性質(zhì)、法則
1.分式的加、減、乘、除、乘方、開方法則
2.分式的性質(zhì)
⑴基本性質(zhì):= (m≠0)
⑵符號(hào)法則:
⑶繁分式:①定義;②化簡(jiǎn)方法(兩種)
3.整式運(yùn)算法則(去括號(hào)、添括號(hào)法則)
4.冪的運(yùn)算性質(zhì):① o = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法則:⑴單×單;⑵單×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法則:⑴單÷單;⑵多÷單。
8.因式分解:⑴定義;⑵方法:a.提公因式法;b.公式法;c.十字相乘法;d.分組分解法;e.求根公式法。
9.算術(shù)根的性質(zhì):= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式運(yùn)算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:a. ;b. ;c. .
11.科學(xué)記數(shù)法:(1≤a<10,n是整數(shù)=
三、應(yīng)用舉例(略)
四、數(shù)式綜合運(yùn)算(略)
★重點(diǎn)★
☆內(nèi)容提要☆
一、重要概念
1.總體:考察對(duì)象的全體。
2.個(gè)體:總體中每一個(gè)考察對(duì)象。
3.樣本:從總體中抽出的一部分個(gè)體。
4.樣本容量:樣本中個(gè)體的數(shù)目。
5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個(gè)數(shù)(或最中間位置的兩個(gè)數(shù)據(jù)的平均數(shù))
二、計(jì)算方法
1.樣本平均數(shù):⑴ ;⑵若,,…,,則(a-常數(shù),,,…,接近較整的常數(shù)a);⑶加權(quán)平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(shì)(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計(jì)總體平均數(shù),樣本容量越大,估計(jì)越準(zhǔn)確。
2.樣本方差:⑴ ;⑵若, ,…, ,則(a-接近、 、…、的平均數(shù)的較"整"的常數(shù));若、 、…、較"小"較"整",則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動(dòng)大小)的特征數(shù),當(dāng)樣本容量較大時(shí),樣本方差非常接近總體方差,通常用樣本方差去估計(jì)總體方差。
3.樣本標(biāo)準(zhǔn)差:
三、應(yīng)用舉例(略)
★重點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
☆內(nèi)容提要☆
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從"圖形"、"表示法"、"界限"、"端點(diǎn)個(gè)數(shù)"、"基本性質(zhì)"等方面加以分析。
2.線段的中點(diǎn)及表示
3.直線、線段的基本性質(zhì)(用"線段的基本性質(zhì)"論證"三角形兩邊之和大于第三邊")
4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補(bǔ)角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(zhì)(利用它證明"直角三角形中斜邊大于直角邊")
9.對(duì)頂角及性質(zhì)
10.平行線及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、三角形
分類:⑴按邊分;
⑵按角分
1.定義(包括內(nèi)、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,
3.三角形的主要線段
討論:①定義②線的交點(diǎn)-三角形的×心③性質(zhì)
①高線②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
⑴一般三角形全等的判定(sas、asa、aas、sss)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
⑴一般計(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。
7.重要輔助線
⑴中點(diǎn)配中點(diǎn)構(gòu)成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
⑵間接證法-反證法:①反設(shè)②歸謬③結(jié)論
⑶證線段相等、角相等常通過(guò)證三角形全等
⑷證線段倍分關(guān)系:加倍法、折半法
⑸證線段和差關(guān)系:延結(jié)法、截余法
⑹證面積關(guān)系:將面積表示出來(lái)
三、四邊形
分類表:
1.一般性質(zhì)(角)
⑴內(nèi)角和:360°
⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。
推論1:順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)得菱形。
推論2:順次連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)得矩形。
⑶外角和:360°
2.特殊四邊形
⑴研究它們的一般方法:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
⑶判定步驟:四邊形→平行四邊形→矩形→正方形
┗→菱形--↑
⑷對(duì)角線的紐帶作用:
3.對(duì)稱圖形
⑴軸對(duì)稱(定義及性質(zhì));⑵中心對(duì)稱(定義及性質(zhì))
4.有關(guān)定理:①平行線等分線段定理及其推論1、2
②三角形、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對(duì)角線;②梯形中常"平移一腰"、"平移對(duì)角線"、"作高"、"連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交"轉(zhuǎn)化為三角形。
6.作圖:任意等分線段。
四、應(yīng)用舉例(略)
)
★重點(diǎn)★一元一次、一元二次方程,二元一次方程組的解法;方程的有關(guān)應(yīng)用題(特別是行程、工程問(wèn)題)
☆內(nèi)容提要☆
一、基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)
2.分類:
二、解方程的依據(jù)-等式性質(zhì)
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、解法
1.一元一次方程的解法:去分母→去括號(hào)→移項(xiàng)→合并同類項(xiàng)→
系數(shù)化成1→解。
2.元一次方程組的解法:⑴基本思想:"消元"⑵方法:①代入法
②加減法
四、一元二次方程
1.定義及一般形式:
2.解法:⑴直接開平方法(注意特征)
⑵配方法(注意步驟-推倒求根公式)
⑶公式法:
⑷因式分解法(特征:左邊=0)
3.根的判別式:
4.根與系數(shù)頂?shù)年P(guān)系:
逆定理:若,則以為根的一元二次方程是:。
5.常用等式:
五、可化為一元二次方程的方程
1.分式方程
⑴定義
⑵基本思想:
⑶基本解法:①去分母法②換元法(如,)
⑷驗(yàn)根及方法
2.無(wú)理方程
⑴定義
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!!)②換元法(例,)⑷驗(yàn)根及方法
3.簡(jiǎn)單的二元二次方程組
由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。
六、列方程(組)解應(yīng)用題
一概述
列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:
⑴審題。理解題意。弄清問(wèn)題中已知量是什么,未知量是什么,問(wèn)題給出和涉及的相等關(guān)系是什么。
⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來(lái)說(shuō),未知數(shù)越多,方程越易列,但越難解。
⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。
⑷尋找相等關(guān)系(有的由題目給出,有的由該問(wèn)題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。
⑸解方程及檢驗(yàn)。
⑹答案。
綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題(設(shè)元、列方程),在由數(shù)學(xué)問(wèn)題的解決而導(dǎo)致實(shí)際問(wèn)題的解決(列方程、寫出答案)。在這個(gè)過(guò)程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
二常用的相等關(guān)系
1.行程問(wèn)題(勻速運(yùn)動(dòng))
基本關(guān)系:s=vt
⑴相遇問(wèn)題(同時(shí)出發(fā)):
⑵追及問(wèn)題(同時(shí)出發(fā)):
若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在b處追上甲,則
⑶水中航行:;
2.配料問(wèn)題:溶質(zhì)=溶液×濃度
溶液=溶質(zhì)+溶劑
3.增長(zhǎng)率問(wèn)題:
4.工程問(wèn)題:基本關(guān)系:工作量=工作效率×工作時(shí)間(常把工作量看著單位"1")。
5.幾何問(wèn)題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。
三注意語(yǔ)言與解析式的互化
如,"多"、"少"、"增加了"、"增加為(到)"、"同時(shí)"、"擴(kuò)大為(到)"、"擴(kuò)大了"、……
又如,一個(gè)三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個(gè)位數(shù)字為c,則這個(gè)三位數(shù)為:100a+10b+c,而不是abc。
四注意從語(yǔ)言敘述中寫出相等關(guān)系。
如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算
如,"小時(shí)""分鐘"的換算;s、v、t單位的一致等。
七、應(yīng)用舉例(略)
★重點(diǎn)★一元一次不等式的性質(zhì)、解法
☆內(nèi)容提要☆
1.定義:a>b、a
2.一元一次不等式:ax>b、ax
3.一元一次不等式組:
4.不等式的性質(zhì):⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac
⑷(傳遞性)a>b,b>c→a>c
⑸a>b,c>d→a+c>b+d.
5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式組的解、解一元一次不等式組(在數(shù)軸上表示解集)
7.應(yīng)用舉例(略)
★重點(diǎn)★相似三角形的判定和性質(zhì)
☆內(nèi)容提要☆
一、本章的兩套定理
第一套(比例的有關(guān)性質(zhì)):
涉及概念:①第四比例項(xiàng)②比例中項(xiàng)③比的前項(xiàng)、后項(xiàng),比的內(nèi)項(xiàng)、外項(xiàng)④黃金分割等。
第二套:
注意:①定理中"對(duì)應(yīng)"二字的含義;
②平行→相似(比例線段)→平行。
二、相似三角形性質(zhì)
1.對(duì)應(yīng)線段…;2.對(duì)應(yīng)周長(zhǎng)…;3.對(duì)應(yīng)面積…。
三、相關(guān)作圖
①作第四比例項(xiàng);②作比例中項(xiàng)。
四、證(解)題規(guī)律、輔助線
1."等積"變"比例","比例"找"相似"。
2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來(lái)
3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。
4.對(duì)比例問(wèn)題,常用處理方法是將"一份"看著k;對(duì)于等比問(wèn)題,常用處理辦法是設(shè)"公比"為k。
5.對(duì)于復(fù)雜的幾何圖形,采用將部分需要的圖形(或基本圖形)"抽"出來(lái)的辦法處理。
五、應(yīng)用舉例(略)
★重點(diǎn)★正、反比例函數(shù),一次、二次函數(shù)的圖象和性質(zhì)。
☆內(nèi)容提要☆
一、平面直角坐標(biāo)系
1.各象限內(nèi)點(diǎn)的坐標(biāo)的特點(diǎn)
2.坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn)
3.關(guān)于坐標(biāo)軸、原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn)
4.坐標(biāo)平面內(nèi)點(diǎn)與有序?qū)崝?shù)對(duì)的對(duì)應(yīng)關(guān)系
二、函數(shù)
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實(shí)際問(wèn)題有
意義。
3.畫函數(shù)圖象:⑴列表;⑵描點(diǎn);⑶連線。
三、幾種特殊函數(shù)
(定義→圖象→性質(zhì))
1.正比例函數(shù)
⑴定義:y=kx(k≠0)或y/x=k。
⑵圖象:直線(過(guò)原點(diǎn))
⑶性質(zhì):①k>0,…②k<0,…
2.一次函數(shù)
⑴定義:y=kx+b(k≠0)
⑵圖象:直線過(guò)點(diǎn)(0,b)-與y軸的交點(diǎn)和(-b/k,0)-與x軸的交點(diǎn)。
⑶性質(zhì):①k>0,…②k<0,…
⑷圖象的四種情況:
3.二次函數(shù)
⑴定義:特殊地,都是二次函數(shù)。
⑵圖象:拋物線(用描點(diǎn)法畫出:先確定頂點(diǎn)、對(duì)稱軸、開口方向,再對(duì)稱地描點(diǎn))。用配方法變?yōu)椋瑒t頂點(diǎn)為(h,k);對(duì)稱軸為直線x=h;a>0時(shí),開口向上;a<0時(shí),開口向下。
⑶性質(zhì):a>0時(shí),在對(duì)稱軸左側(cè)…,右側(cè)…;a<0時(shí),在對(duì)稱軸左側(cè)…,右側(cè)…。
4.反比例函數(shù)
⑴定義:或xy=k(k≠0)。
⑵圖象:雙曲線(兩支)-用描點(diǎn)法畫出。
⑶性質(zhì):①k>0時(shí),圖象位于…,y隨x…;②k<0時(shí),圖象位于…,y隨x…;③兩支曲線無(wú)限接近于坐標(biāo)軸但永遠(yuǎn)不能到達(dá)坐標(biāo)軸。
四、重要解題方法
1.用待定系數(shù)法求解析式(列方程[組]求解)。對(duì)求二次函數(shù)的解析式,要合理選用一般式或頂點(diǎn)式,并應(yīng)充分運(yùn)用拋物線關(guān)于對(duì)稱軸對(duì)稱的特點(diǎn),尋找新的點(diǎn)的坐標(biāo)。如下圖:
2.利用圖象一次(正比例)函數(shù)、反比例函數(shù)、二次函數(shù)中的k、b;a、b、c的符號(hào)。
六、應(yīng)用舉例(略)
★重點(diǎn)★解直角三角形
☆內(nèi)容提要☆
一、三角函數(shù)
1.定義:在rt△abc中,∠c=rt∠,則sina= ;cosa= ;tga= ;ctga= .
2.特殊角的三角函數(shù)值:
0° 30° 45° 60° 90°
sinα
cosα
tgα /
ctgα /
3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;…
4.三角函數(shù)值隨角度變化的關(guān)系
5.查三角函數(shù)表
二、解直角三角形
1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。
2.依據(jù):①邊的關(guān)系:
②角的關(guān)系:a+b=90°
③邊角關(guān)系:三角函數(shù)的定義。
注意:盡量避免使用中間數(shù)據(jù)和除法。
三、對(duì)實(shí)際問(wèn)題的處理
1.俯、仰角:2.方位角、象限角:3.坡度:
4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。
四、應(yīng)用舉例(略)
★重點(diǎn)★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。
☆內(nèi)容提要☆
一、圓的基本性質(zhì)
1.圓的定義(兩種)
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3."三點(diǎn)定圓"定理
4.垂徑定理及其推論
5."等對(duì)等"定理及其推論
5.與圓有關(guān)的角:⑴圓心角定義(等對(duì)等定理)
⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關(guān)系
1.三種位置及判定與性質(zhì):
2.切線的性質(zhì)(重點(diǎn))
3.切線的判定定理(重點(diǎn))。圓的切線的判定有⑴…⑵…
4.切線長(zhǎng)定理
三、圓換圓的位置關(guān)系
1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切)
2.相切(交)兩圓連心線的性質(zhì)定理
3.兩圓的公切線:⑴定義⑵性質(zhì)
四、與圓有關(guān)的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內(nèi)接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內(nèi)切圓及性質(zhì)
3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)
4.正多邊形及計(jì)算
中心角:
內(nèi)角的一半:(右圖)
(解rt△oam可求出相關(guān)元素, 、等)
六、一組計(jì)算公式
1.圓周長(zhǎng)公式
2.圓面積公式
3.扇形面積公式
4.弧長(zhǎng)公式
5.弓形面積的計(jì)算方法
6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計(jì)算
七、點(diǎn)的軌跡
六條基本軌跡
八、有關(guān)作圖
1.作三角形的外接圓、內(nèi)切圓
2.平分已知弧
3.作已知兩線段的比例中項(xiàng)
4.等分圓周:4、8;6、3等分
九、基本圖形
十、重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點(diǎn)圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
1、科學(xué)的預(yù)習(xí)方法
預(yù)習(xí)中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對(duì)預(yù)習(xí)中遇到的沒(méi)有掌握好的有關(guān)的舊知識(shí),可進(jìn)行補(bǔ)缺,以減聽課過(guò)程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預(yù)習(xí)后將課本的例題及老師要講授的習(xí)題提前完成,還可以培養(yǎng)自己的自學(xué)能力,與老師的方法進(jìn)行比較,可以發(fā)現(xiàn)更多的方法與技巧??傊?,這樣會(huì)使你的聽課更加有的放矢,你會(huì)知道哪些該重點(diǎn)聽,哪些該重點(diǎn)記。
2、科學(xué)的聽課方式
聽課的過(guò)程不是一個(gè)被動(dòng)參預(yù)的過(guò)程,要全身心地投入課堂學(xué)習(xí),耳到、眼到、心到、口到、手到。還要想在老師前面,不斷思考:面對(duì)這個(gè)問(wèn)題我會(huì)怎么想?當(dāng)老師講解時(shí),又要思考:老師為什么這樣想?這里用了什么思想方法?這樣做的目的是什么?這個(gè)題有沒(méi)有更好的方法?問(wèn)題多了,思路自然就開闊了。
3、科學(xué)的記錄筆記
記問(wèn)題--將課堂上未聽懂的問(wèn)題及時(shí)記下來(lái),便于課后請(qǐng)教同學(xué)或老師,把問(wèn)題弄懂弄通。
記疑點(diǎn)--對(duì)老師在課堂上講的內(nèi)容有疑問(wèn)應(yīng)及時(shí)記下,這類疑點(diǎn),有可能是自己理解錯(cuò)造成的,也有可能是老師講課疏忽大意造成的,記下來(lái)后,便于課后與老師商榷。
記方法--勤記老師講的解題技巧、思路及方法,這對(duì)于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對(duì)提高解題水平大有益處。
記總結(jié)--注意記住老師的課后總結(jié),這對(duì)于濃縮一堂課的內(nèi)容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找存在問(wèn)題、找到規(guī)律,融會(huì)貫通課堂內(nèi)容都很有作用。
養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣
多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。
及時(shí)了解、掌握常用的數(shù)學(xué)思想和方法
中學(xué)數(shù)學(xué)學(xué)習(xí)要重點(diǎn)掌握的的數(shù)學(xué)思想有以上幾個(gè):集合與對(duì)應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運(yùn)動(dòng)思想,轉(zhuǎn)化思想,變換思想。
有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實(shí)驗(yàn),聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無(wú)限,抽象與概括等。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇三
⑴垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的2條弧。
逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的2條弧。
⑵有關(guān)圓周角和圓心角的性質(zhì)和定理
① 在同圓或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對(duì)應(yīng)的其余各組量都分別相等。
②一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
直徑所對(duì)的圓周角是直角。90度的圓周角所對(duì)的弦是直徑。
圓心角計(jì)算公式: θ=(l/2πr)×360°=180°l/πr=l/r(弧度)
即圓心角的度數(shù)等于它所對(duì)的弧的度數(shù);圓周角的度數(shù)等于它所對(duì)的弧的度數(shù)的一半。
③ 如果一條弧的長(zhǎng)是另一條弧的2倍,那么其所對(duì)的圓周角和圓心角是另一條弧的2倍。
⑶有關(guān)外接圓和內(nèi)切圓的性質(zhì)和定理
①一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形三個(gè)頂點(diǎn)距離相等;
②內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形三邊距離相等。
③r=2s△÷l(r:內(nèi)切圓半徑,s:三角形面積,l:三角形周長(zhǎng))
④兩相切圓的連心線過(guò)切點(diǎn)(連心線:兩個(gè)圓心相連的直線)
⑤圓o中的弦pq的中點(diǎn)m,過(guò)點(diǎn)m任作兩弦ab,cd,弦ad與bc分別交pq于x,y,則m為xy之中點(diǎn)。
(4)如果兩圓相交,那么連接兩圓圓心的線段(直線也可)垂直平分公共弦。
(5)弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。
(6)圓內(nèi)角的度數(shù)等于這個(gè)角所對(duì)的弧的度數(shù)之和的一半。
(7)圓外角的度數(shù)等于這個(gè)角所截兩段弧的度數(shù)之差的一半。
(8)周長(zhǎng)相等,圓面積比長(zhǎng)方形、正方形、三角形的面積大。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇四
從現(xiàn)實(shí)物體中抽象出幾何圖形,把立體圖形轉(zhuǎn)化為平面圖形是重點(diǎn);
正確判定圍成立體圖形的面是平面還是曲面,探索點(diǎn)、線、面、體之間的關(guān)系是重點(diǎn);
畫一條線段等于已知線段,比較兩條線段的長(zhǎng)短是一個(gè)重點(diǎn),在現(xiàn)實(shí)情境中,了解線段的性質(zhì)兩點(diǎn)之間,線段最短是另一個(gè)重點(diǎn)。
立體圖形與平面圖形之間的轉(zhuǎn)化是難點(diǎn);
探索點(diǎn)、線、面、體運(yùn)動(dòng)變化后形成的圖形是難點(diǎn);
畫一條線段等于已知線段的尺規(guī)作圖方法,正確比較兩條線段長(zhǎng)短是難點(diǎn)。
幾何圖形:點(diǎn)、線、面、體這些可幫助人們有效的刻畫錯(cuò)綜復(fù)雜的世界,它們都稱為幾何圖形。從實(shí)物中抽象出的各種圖形統(tǒng)稱為幾何圖形。有些幾何圖形的各部分不在同一平面內(nèi),叫做立體圖形。有些幾何圖形的各部分都在同一平面內(nèi),叫做平面圖形。雖然立體圖形與平面圖形是兩類不同的幾何圖形,但它們是互相聯(lián)系的。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇五
顧名思義。中位線就是圖形的中點(diǎn)的連線,包括三角形中位線和梯形中位線兩種。
中位線概念
(1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(2)梯形中位線定義:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形的中位線。
注意:
(1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點(diǎn)和它對(duì)邊的中點(diǎn),而三角形中位線是連結(jié)三角形兩邊中點(diǎn)的線段。
(2)梯形的中位線是連結(jié)兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。
(3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線就變成三角形的中位線。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇六
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
1、y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2、當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
1、作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2、性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)p(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
3、k,b與函數(shù)圖像所在象限:
當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
當(dāng)b>0時(shí),直線必通過(guò)一、二象限;
當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)
當(dāng)b<0時(shí),直線必通過(guò)三、四象限。
特別地,當(dāng)b=o時(shí),直線通過(guò)原點(diǎn)o(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。
已知點(diǎn)a(x1,y1);b(x2,y2),請(qǐng)確定過(guò)點(diǎn)a、b的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)p(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
1、當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。
2、當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量s。g=s—ft。
1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)
2、求與x軸平行線段的中點(diǎn):|x1—x2|/2
3、求與y軸平行線段的中點(diǎn):|y1—y2|/2
4、求任意線段的長(zhǎng):√(x1—x2)^2+(y1—y2)^2(注:根號(hào)下(x1—x2)與(y1—y2)的平方和)
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,iai還可以決定開口大小,iai越大開口就越小,iai越小開口就越大。)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x—h)^2+k[拋物線的頂點(diǎn)p(h,k)]
交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)a(x?,0)和b(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x=—b/2a。
對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)p。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2、拋物線有一個(gè)頂點(diǎn)p,坐標(biāo)為p(—b/2a,(4ac—b^2)/4a)
當(dāng)—b/2a=0時(shí),p在y軸上;當(dāng)δ=b^2—4ac=0時(shí),p在x軸上。
3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點(diǎn)個(gè)數(shù)
δ=b^2—4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
δ=b^2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
δ=b^2—4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。x的取值是虛數(shù)(x=—b±√b^2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。
函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1、二次函數(shù)y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:
解析式頂點(diǎn)坐標(biāo)對(duì)稱軸
y=ax^2(0,0)x=0
y=a(x—h)^2(h,0)x=h
y=a(x—h)^2+k(h,k)x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a)x=—b/2a
當(dāng)h>0時(shí),y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到。
當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x—h)^2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了。這給畫圖象提供了方便。
2、拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=—b/2a,頂點(diǎn)坐標(biāo)是(—b/2a,[4ac—b^2]/4a)。
3、拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤—b/2a時(shí),y隨x的增大而減??;當(dāng)x≥—b/2a時(shí),y隨x的增大而增大。若a<0,當(dāng)x≤—b/2a時(shí),y隨x的增大而增大;當(dāng)x≥—b/2a時(shí),y隨x的增大而減小。
4、拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b^2—4ac>0,圖象與x軸交于兩點(diǎn)a(x?,0)和b(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=
(a≠0)的兩根。這兩點(diǎn)間的距離ab=|x?—x?|
當(dāng)△=0。圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0。圖象與x軸沒(méi)有交點(diǎn)。當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。
5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=—b/2a時(shí),y最?。ù螅┲?(4ac—b^2)/4a。
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。
6、用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0)。
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x—h)^2+k(a≠0)。
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x—x?)(x—x?)(a≠0)。
7、二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)。
形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。
當(dāng)k>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù)
當(dāng)k<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。
知識(shí)點(diǎn):
1、過(guò)反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。
2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇七
重點(diǎn)①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。
1.圓的定義(兩種)
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點(diǎn)定圓”定理
4.垂徑定理及其推論
5.“等對(duì)等”定理及其推論
5. 與圓有關(guān)的角:⑴圓心角定義(等對(duì)等定理)
⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)
⑶弦切角定義(弦切角定理)
1.三種位置及判定與性質(zhì):
2.切線的性質(zhì)(重點(diǎn))
3.切線的判定定理(重點(diǎn))。圓的切線的判定有⑴…⑵…
4.切線長(zhǎng)定理
1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切)
2.相切(交)兩圓連心線的性質(zhì)定理
3.兩圓的公切線:⑴定義⑵性質(zhì)
1.相交弦定理
2.切割線定理
1.圓的內(nèi)接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內(nèi)切圓及性質(zhì)
3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)
4.正多邊形及計(jì)算
中心角:
內(nèi)角的一半: (右圖)
(解rt△oam可求出相關(guān)元素, 、 等)
1.圓周長(zhǎng)公式
2.圓面積公式
3.扇形面積公式
4.弧長(zhǎng)公式
5.弓形面積的計(jì)算方法
6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計(jì)算
六條基本軌跡
1.作三角形的外接圓、內(nèi)切圓
2.平分已知弧
3.作已知兩線段的比例中項(xiàng)
4.等分圓周:4、8;6、3等分
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的'圓周角
4.切點(diǎn)圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇八
(1)分類中的每一部分是相互獨(dú)立的;
(2)一次分類按一個(gè)標(biāo)準(zhǔn);
(3)分類討論應(yīng)逐級(jí)有序進(jìn)行。以探尋直角坐標(biāo)系中等腰直角三角形存在的問(wèn)題來(lái)說(shuō),如果給定兩個(gè)點(diǎn)a、b,需要在x軸上找第三個(gè)點(diǎn)c使得這個(gè)三角形abc是等腰直角三角形,這個(gè)時(shí)候同學(xué)們可以線段來(lái)分類討論:ab為斜邊時(shí),ac為斜邊或時(shí)bc為斜邊時(shí)點(diǎn)c的坐標(biāo)。這樣討論保證不會(huì)丟掉任何一種可能性,并且效率較高。當(dāng)然也可以按照角來(lái)討論,但是注意不要兩種分類方法穿插進(jìn)行。有些時(shí)候有可能會(huì)進(jìn)行二次討論,這個(gè)時(shí)候?qū)τ谕瑢W(xué)們的條理性要求就更大了,例如探討含有30°角的直角三角形時(shí),要先討論那個(gè)角是直角,在討論哪個(gè)角是30°或60°。
第三、在列出所有需要討論的可能性之后,要仔細(xì)審查是否每種可能性都會(huì)存在,是否有需要舍去的,最常見的就是一元二次方程如果有兩個(gè)不等實(shí)根,那么我們就要看看是不是這兩個(gè)根都能保留。同樣有些時(shí)候也需要注意是否有些討論結(jié)果重復(fù),需要進(jìn)行合并。例如直角坐標(biāo)系中求能夠成等腰三角形的點(diǎn)坐標(biāo),如果按照一定的原則分類討論后,有可能會(huì)出現(xiàn)同一個(gè)點(diǎn)上可以構(gòu)成兩個(gè)等腰三角形的情況,這種情況下就要進(jìn)行合并。也就是說(shuō)找到的三角形的個(gè)數(shù)和點(diǎn)的個(gè)數(shù)是不一樣的。
1、熟知直角三角形的直角,等腰三角形的腰與角以及圓的對(duì)稱性,根據(jù)圖形的特殊性質(zhì),找準(zhǔn)討論對(duì)象,逐一解決。在探討等腰或直角三角形存在時(shí),一定要按照一定的原則,不要遺漏,最后要綜合。
2、討論點(diǎn)的位置,一定要看清點(diǎn)所在的范圍,是在直線上,還是在射線或者線段上。
3、圖形的對(duì)應(yīng)關(guān)系多涉及到三角形的全等或相似問(wèn)題,對(duì)其中可能出現(xiàn)的有關(guān)角、邊的可能對(duì)應(yīng)情況加以分類討論。
4、代數(shù)式變形中如果有絕對(duì)值、平方時(shí),里面的數(shù)開出來(lái)要注意正負(fù)號(hào)的取舍。
5、考查點(diǎn)的取值情況或范圍。這部分多是考查自變量的取值范圍的分類,解題中應(yīng)十分注意性質(zhì)、定理的使用條件及范圍。
6、函數(shù)題目中如果說(shuō)函數(shù)圖象與坐標(biāo)軸有交點(diǎn),那么一定要討論這個(gè)交點(diǎn)是和哪一個(gè)坐標(biāo)軸的哪一半軸的交點(diǎn)。
7、由動(dòng)點(diǎn)問(wèn)題引出的函數(shù)關(guān)系,當(dāng)運(yùn)動(dòng)方式改變后(比如從一條線段移動(dòng)到另一條線段)是,所寫的函數(shù)應(yīng)該進(jìn)行分段討論。
由于考試題目千變?nèi)f化,上面所列的項(xiàng)目不一定全面,所以還需要同學(xué)們?cè)谄綍r(shí)做題的時(shí)候多多積累。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇九
(1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。
(2)梯形中位線定義:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線。
注意(1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連接一頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段,而三角形中位線是連接三角形兩邊中點(diǎn)的線段。
(2)梯形的中位線是連接兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。
(3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)三角形的中位線就變成梯形的中位線。
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
(2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.
三角形有三條中位線,首尾相接時(shí),每個(gè)小三角形面積都等于原三角形的四分之一,這四個(gè)三角形都互相全等。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇十
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).
分式混合運(yùn)算法則:
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);
乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;
變號(hào)必須兩處,結(jié)果要求最簡(jiǎn).
二次根式的加減法
知識(shí)點(diǎn)1:同類二次根式
(ⅰ)幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
(ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡(jiǎn)形式的二次根式化為最簡(jiǎn)二次根式以后,再看被開方數(shù)是否相同。(2)幾個(gè)二次根式是否是同類二次根式,只與被開方數(shù)及根指數(shù)有關(guān),而與根號(hào)外的因式無(wú)關(guān)。
知識(shí)點(diǎn)2:合并同類二次根式的方法
合并同類二次根式的理論依據(jù)是逆用乘法對(duì)加法的分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開方數(shù)都不變,不是同類二次根式的不能合并。
知識(shí)點(diǎn)3:二次根式的加減法則
二次根式相加減先把各個(gè)二次根式化成最簡(jiǎn)二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。
知識(shí)點(diǎn)4:二次根式的混合運(yùn)算方法和順序
運(yùn)算方法是利用加、減、乘、除法則以及與多項(xiàng)式乘法類似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號(hào)的先算括號(hào)內(nèi)的。
知識(shí)點(diǎn)5:二次根式的加減法則與乘除法則的區(qū)別
乘除法中,系數(shù)相乘,被開方數(shù)相乘,與兩根式是否是同類根式無(wú)關(guān),加減法中,系數(shù)相加,被開方數(shù)不變而且兩根式須是同類最簡(jiǎn)根式。
★重點(diǎn)★解直角三角形
☆內(nèi)容提要☆
一、三角函數(shù)
1.定義:在rt△abc中,∠c=rt∠,則sina=;cosa=;tga=;ctga=.
2.特殊角的三角函數(shù)值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;…
4.三角函數(shù)值隨角度變化的關(guān)系
5.查三角函數(shù)表
二、解直角三角形
1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。
2.依據(jù):①邊的關(guān)系:
②角的關(guān)系:a+b=90°
③邊角關(guān)系:三角函數(shù)的定義。
注意:盡量避免使用中間數(shù)據(jù)和除法。
三、對(duì)實(shí)際問(wèn)題的處理
1.俯、仰角:2.方位角、象限角:3.坡度:
4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇十一
第一單元小數(shù)乘法
1、小數(shù)乘整數(shù)(p2、3):意義--求幾個(gè)相同加數(shù)的和的簡(jiǎn)便運(yùn)算。
如:1.5×3 表示 1.5 的 3 倍是多少或 3 個(gè) 1.5 的和的簡(jiǎn)便運(yùn)算。
計(jì)算方法:先把小數(shù)擴(kuò)大成整數(shù);按整數(shù)乘法的法則算出積;再看因數(shù)中 一共有幾位小數(shù),就從積的右邊起數(shù)出幾位點(diǎn)上小數(shù)點(diǎn)。
2、小數(shù)乘小數(shù)(p4、5):意義--就是求這個(gè)數(shù)的幾分之幾是多少。
如:1.5×0.8 就是求 1.5 的十分之八是多少。
1.5×1.8 就是求 1.5 的 1.8 倍是多少。
計(jì)算方法:先把小數(shù)擴(kuò)大成整數(shù);按整數(shù)乘法的法則算出積;再看因數(shù)一共有幾位小數(shù),就從積的右邊起數(shù)出幾位點(diǎn)上小數(shù)點(diǎn)。
注意:計(jì)算結(jié)果中,小數(shù)部分末尾的 0 要去掉,把小數(shù)化簡(jiǎn);小數(shù)部分位數(shù)不夠時(shí),要用 0 占位。
3、規(guī)律(1)(p9):一個(gè)數(shù)(0 除外)乘大于 1 的數(shù),積比原來(lái)的數(shù)大;
一個(gè)數(shù)(0 除外)乘小于 1 的數(shù),積比原來(lái)的數(shù)小。
4、求近似數(shù)的方法一般有三種:(p10)
⑴四舍五入法;⑵進(jìn)一法;⑶去尾法
5、計(jì)算錢數(shù),保留兩位小數(shù),表示計(jì)算到分。保留一位小數(shù),表示計(jì)算到角。
6、(p11)小數(shù)四則運(yùn)算順序跟整數(shù)是一樣的。
7、運(yùn)算定律和性質(zhì):
加法:加法交換律: a+b=b+a 加法結(jié)合律:(a+b)+c=a+(b+c)
減法:減法性質(zhì): a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交換律:a×b=b×a
乘法結(jié)合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c 【(a-b)×c=a×c-b×c】
除法:除法性質(zhì): a÷b÷c=a÷(b×c)
第二單元小數(shù)除法
8、小數(shù)除法的意義:已知兩個(gè)因數(shù)的積與其中的一個(gè)因數(shù),求另一個(gè)因數(shù)的運(yùn)算。
如:0.6÷0.3 表示已知兩個(gè)因數(shù)的積 0.6 與其中的一個(gè)因數(shù) 0.3,求另一個(gè)因數(shù)的運(yùn)算。
9、小數(shù)除以整數(shù)的計(jì)算方法(p16):小數(shù)除以整數(shù),按整數(shù)除法的方法去除。商的小數(shù)點(diǎn)要和被除數(shù)的小數(shù)點(diǎn)對(duì)齊。整數(shù)部分不夠除,商 0,點(diǎn)上小數(shù)點(diǎn)。如果有余數(shù),要添 0 再除。
10、(p21)除數(shù)是小數(shù)的除法的計(jì)算方法: 先將除數(shù)和被除數(shù)擴(kuò)大相同的倍數(shù),使除數(shù)變成整數(shù),再按"除數(shù)是整數(shù)的小數(shù)除法"的法則進(jìn)行計(jì)算。
注意:如果被除數(shù)的位數(shù)不夠,在被除數(shù)的末尾用 0 補(bǔ)足。
11、(p23)在實(shí)際應(yīng)用中,小數(shù)除法所得的商也可以根據(jù)需要用"四舍五入"法保留一定的小數(shù)位數(shù) 求出商的近似數(shù)。
12、(p24、25)除法中的變化規(guī)律: ①商不變性質(zhì):被除數(shù)和除數(shù)同時(shí)擴(kuò)大或縮小相同的倍數(shù)( 0除外),商不變。②除數(shù)不變,被除數(shù)擴(kuò)大,商隨著擴(kuò)大。 被除數(shù)不變,除數(shù)縮小,商擴(kuò)大。 ③被除數(shù)不變,除數(shù)縮小,商擴(kuò)大。
13、(p28)循環(huán)小數(shù):一個(gè)數(shù)的小數(shù)部分,從某一位起,一個(gè)數(shù)字或者幾個(gè)數(shù)字依次不斷重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。
循環(huán)節(jié):一個(gè)循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字。如 6.3232…… ……的循環(huán)節(jié)是 32.
14、小數(shù)部分的位數(shù)是有限的小數(shù),叫做有限小數(shù)。小數(shù)部分的位數(shù)是無(wú) 限的小數(shù),叫做無(wú)限小數(shù)。
第三單元觀察物體
15、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長(zhǎng)方體或正方體時(shí),從固定位置最多能看到三個(gè)面。
第四單元簡(jiǎn)易方程
16、(p45)在含有字母的式子里,字母中間的乘號(hào)可以記作"·",也可 以省略不寫。
加號(hào)、減號(hào)除號(hào)以及數(shù)與數(shù)之間的乘號(hào)不能省略。
17、a×a 可以寫作 a·a 或 a ,a 讀作 a 的平方。 2a 表示 a+a
18、方程:含有未知數(shù)的等式稱為方程。
使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。
求方程的解的過(guò)程叫做解方程。
19、解方程原理:天平平衡。
等式左右兩邊同時(shí)加、減、乘、除相同的數(shù)(0 除外),等式依然成立。、
20、 個(gè)數(shù)量關(guān)系式:加法:和=加數(shù)+加數(shù) 一個(gè)加數(shù)=和-另一個(gè)加數(shù)
減法:差=被減數(shù)-減數(shù) 被減數(shù)=差+減數(shù) 減數(shù)=被減數(shù)-差
乘法:積=因數(shù)×因數(shù) 一個(gè)因數(shù)=積÷另一個(gè)因數(shù)
除法:商=被除數(shù)÷除數(shù) 被除數(shù)=商×除數(shù) 除數(shù)=被除數(shù)÷商
21、所有的方程都是等式,但等式不一定都是方程。
22、方程的檢驗(yàn)過(guò)程:方程左邊=……
23、方程的解是一個(gè)數(shù);
解方程式一個(gè)計(jì)算過(guò)程。=方程右邊
所以,x=…是方程的解。
第五單元多邊形的面積
23、公式:
長(zhǎng)方形:周長(zhǎng)=(長(zhǎng)+寬)×2--【長(zhǎng)=周長(zhǎng)÷2-寬;寬= 周長(zhǎng)÷ 2-長(zhǎng)】 字母公式:c=(a+b)×2
面積= 面積=長(zhǎng)×寬 字母公式:s=ab
正方形:周長(zhǎng)=邊長(zhǎng)×4 字母公式:c=4a
平行四邊形的面積=底×高 字母公式: s=ah
三角形的面積=底×高÷2 --【底=面積×2÷高;高=面積×2÷底】 字母公式: s=ah÷2
梯形的面積=(上底+下底)×高÷2 字母公式: s=(a+b)h÷2
【上底=面積×2÷高-下底,下底=面積×2÷高-上底;高=面積×2÷(上底+下底)】
24、平行四邊形面積公式推導(dǎo):剪拼、平移
25、三角形面積公式推導(dǎo):旋轉(zhuǎn)
平行四邊形可以轉(zhuǎn)化成一個(gè)長(zhǎng)方形;
兩個(gè)完全一樣的三角形可以拼成一個(gè)平行四邊形,
長(zhǎng)方形的長(zhǎng)相當(dāng)于平行四邊形的底;
平行四邊形的底相當(dāng)于三角形的底;
長(zhǎng)方形的寬相當(dāng)于平行四邊形的高;
平行四邊形的高相當(dāng)于三角形的高;
長(zhǎng)方形的面積等于平行四邊形的面積,
平行四邊形的面積等于三角形面積的 2 倍,
因?yàn)殚L(zhǎng)方形面積=長(zhǎng)×寬,所以平行四邊形面積=底×高。
因?yàn)槠叫兴倪呅蚊娣e= 因?yàn)槠叫兴倪呅蚊娣e=底×高,所以三角形面積=底×高÷2
26、梯形面積公式推導(dǎo):旋轉(zhuǎn)
27、三角形、梯形的第二種推導(dǎo)方法老師已講,自己看書
兩個(gè)完全一樣的梯形可以拼成一個(gè)平行四邊形, 知道就行。
平行四邊形的底相當(dāng)于梯形的上下底之和;
平行四邊形的高相當(dāng)于梯形的高;
平行四邊形面積等于梯形面積的 2 倍,
因?yàn)槠叫兴倪呅蚊娣e=底×高,所以梯形面積=(上底+下底)×高÷2
28、等底等高的平行四邊形面積相等;
等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的 2 倍。
29、長(zhǎng)方形框架拉成平行四邊形,周長(zhǎng)不變,面積變小。
30、組合圖形:轉(zhuǎn)化成已學(xué)的簡(jiǎn)單圖形,通過(guò)加、減進(jìn)行計(jì)算。
第六單元統(tǒng)計(jì)與可能性
31、平均數(shù)=總數(shù)量÷總份數(shù)
32、中位數(shù)的優(yōu)點(diǎn)是不受偏大或偏小數(shù)據(jù)的影響,用它代表全體數(shù)據(jù)的一 般水平更合適。
第七單元數(shù)學(xué)廣角
33、數(shù)不僅可以用來(lái)表示數(shù)量和順序,還可以用來(lái)編碼。
34、郵政編碼:由 6 位組成,前 2 位表示省(直轄市、自治區(qū))
0 5 4 0 0 1
前 3 位表示郵區(qū)
前 4 位表示縣(市)
最后 2 位表示投遞局
35、身份證碼: 18 位
1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢臺(tái)市 邢臺(tái)縣 出生日期 順序碼 校驗(yàn)碼
倒數(shù)第二位的數(shù)字用來(lái)表示性別,單數(shù)表示男,雙數(shù)表示女。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇十二
1.一元二次方程3x2+5x-2=0的常數(shù)項(xiàng)是-2.
2.一元二次方程3x2+4x-2=0的一次項(xiàng)系數(shù)為4,常數(shù)項(xiàng)是-2.
3.一元二次方程3x2-5x-7=0的二次項(xiàng)系數(shù)為3,常數(shù)項(xiàng)是-7.
4.把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0.
1.直角坐標(biāo)系中,點(diǎn)a(3,0)在y軸上。
2.直角坐標(biāo)系中,x軸上的任意點(diǎn)的橫坐標(biāo)為0.
3.直角坐標(biāo)系中,點(diǎn)a(1,1)在第一象限。
4.直角坐標(biāo)系中,點(diǎn)a(-2,3)在第四象限。
5.直角坐標(biāo)系中,點(diǎn)a(-2,1)在第二象限。
1.當(dāng)x=2時(shí),函數(shù)y=的值為1.
2.當(dāng)x=3時(shí),函數(shù)y=的值為1.
3.當(dāng)x=-1時(shí),函數(shù)y=的值為1.
1.函數(shù)y=-8x是一次函數(shù)。
2.函數(shù)y=4x+1是正比例函數(shù)。
3.函數(shù)是反比例函數(shù)。
4.拋物線y=-3(x-2)2-5的開口向下。
5.拋物線y=4(x-3)2-10的對(duì)稱軸是x=3.
6.拋物線的頂點(diǎn)坐標(biāo)是(1,2)。
7.反比例函數(shù)的圖象在第一、三象限。
1.數(shù)據(jù)13,10,12,8,7的平均數(shù)是10.
2.數(shù)據(jù)3,4,2,4,4的眾數(shù)是4.
3.數(shù)據(jù)1,2,3,4,5的中位數(shù)是3.
30= 。
260+ cos260= 1.
3.2sin30+ tan45= 2.
45= 1.
60+ sin30= 1.
1.半圓或直徑所對(duì)的圓周角是直角。
2.任意一個(gè)三角形一定有一個(gè)外接圓。
3.在同一平面內(nèi),到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。
4.在同圓或等圓中,相等的圓心角所對(duì)的弧相等。
5.同弧所對(duì)的圓周角等于圓心角的一半。
6.同圓或等圓的半徑相等。
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 中考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)篇十三
三角形的重心
已知:△abc中,d為bc中點(diǎn),e為ac中點(diǎn),ad與be交于o,co延長(zhǎng)線交ab于f。求證:f為ab中點(diǎn)。
證明:根據(jù)燕尾定理,s(△aob)=s(△aoc),又s(△aob)=s(△boc),∴s(△aoc)=s(△boc),再應(yīng)用燕尾定理即得af=bf,命題得證。
重心的幾條性質(zhì):
1.重心和三角形3個(gè)頂點(diǎn)組成的3個(gè)三角形面積相等。
2.重心到三角形3個(gè)頂點(diǎn)距離的平方和最小。
3.在平面直角坐標(biāo)系中,重心的坐標(biāo)是頂點(diǎn)坐標(biāo)的算術(shù)平均,即其坐標(biāo)為((x1+x2+x3)/3,(y1+y2+y3)/3);空間直角坐標(biāo)系——橫坐標(biāo):(x1+x2+x3)/3 縱坐標(biāo):(y1+y2+y3)/3 豎坐標(biāo):(z1+z2+z3)/3
4.重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1。
5.重心是三角形內(nèi)到三邊距離之積最大的點(diǎn)。
如果用塞瓦定理證,則極易證三條中線交于一點(diǎn)。