無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
倒數(shù)的認(rèn)識教學(xué)反思100字 倒數(shù)的認(rèn)識教學(xué)反思優(yōu)缺點(diǎn)篇一
也給了我不少啟示:
當(dāng)新課程以全新的理念走進(jìn)課堂時,我們也應(yīng)積極參與,并努力超越,實(shí)現(xiàn)用活教材,落實(shí)新理念。那么如何用活教材呢?這節(jié)課上,我采用了開門見山式的教學(xué)方法,正確處理了“教教材”和“用教材”的關(guān)系。
1、在本課的引入中,我沒有采用多種鋪墊,而是直接通過讓學(xué)生計(jì)算教材中的三個乘法算式,觀察積的特點(diǎn)與算式中兩個因數(shù)的特點(diǎn),直接對倒數(shù)形成了初步的認(rèn)識,更明白了只要調(diào)換分子與分母的位置就會得到一個新的分?jǐn)?shù)。然后讓學(xué)生對具有這樣特點(diǎn)的兩個分?jǐn)?shù)起名,學(xué)生不約而同的叫它們倒數(shù)。
2、變例題教學(xué)為學(xué)生舉例說明。學(xué)生在深入思考中得出結(jié)論,這就是學(xué)生學(xué)習(xí)的成果。我覺得,這樣做不僅增添了課堂活力,而且還讓學(xué)生經(jīng)歷了探索的過程,解決了學(xué)生的困惑,更讓學(xué)生體會到了成功的快樂。
3、豐富練習(xí)的形式。在充分利用教材的練習(xí)同時,我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,如在倒數(shù)意義揭示后,為了鞏固對概念的理解,進(jìn)行了一組針對性練習(xí)。
通過教學(xué),我感受到教師在教學(xué)中應(yīng)該相信學(xué)生的能力,并積極成為學(xué)生學(xué)習(xí)的合作者、幫助者和促進(jìn)者,正確處理好扶與放的關(guān)系。
1、給學(xué)生獨(dú)立思考的時間。相信學(xué)生能具有獨(dú)立思考的能力,教學(xué)中每一個問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。教學(xué)中,我在讓學(xué)生舉例時不僅給學(xué)生充足的時間,而且讓學(xué)生把算式寫下來。
2、給學(xué)生合作學(xué)習(xí)的機(jī)會。當(dāng)學(xué)生有困惑時,教師要引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。
3、創(chuàng)設(shè)平等、和諧的課堂氛圍。新課標(biāo)強(qiáng)調(diào)學(xué)生在獲得對數(shù)學(xué)理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到進(jìn)步和發(fā)展。為此作為教學(xué)活動中合作者、組織者,在創(chuàng)設(shè)平等、和諧的課堂氛圍上應(yīng)多“扶”。
1、由于自己的性格所至,仍然存在著對學(xué)生不放心的思想,放手不夠大膽,總要講得面面俱到,導(dǎo)致后邊的教學(xué)時間倉促,在概括方法、比較大小時主要以教師為主,處理的比較匆忙,忽視了學(xué)生學(xué)習(xí)的主體性,在一定的程度束縛了學(xué)生的發(fā)展。
2、對于有些問題的處理完全可以放手讓學(xué)生進(jìn)行評價,這樣既能調(diào)動學(xué)生的積極性,還能使學(xué)生更深刻的掌握知識。
課堂教學(xué)是一門藝術(shù),如何使自己的教學(xué)相得益彰,需要我們不斷地進(jìn)行嘗試反思這樣才能不斷成長進(jìn)步。
倒數(shù)的認(rèn)識教學(xué)反思100字 倒數(shù)的認(rèn)識教學(xué)反思優(yōu)缺點(diǎn)篇二
本節(jié)課是一節(jié)概念課,是陳述性知識,放在這個單元是起到了承上啟下作用,是為了銜接分?jǐn)?shù)乘法和分?jǐn)?shù)除法計(jì)算法則。其目的就是為除以一個數(shù)等于乘這個數(shù)的倒數(shù)做鋪墊,在這個問題上我一直認(rèn)為:為什么要乘這個數(shù)的倒數(shù)這個問題要說清楚,否則分?jǐn)?shù)除法的計(jì)算法則不好理解。
教學(xué)從尋找乘積是1的兩個分?jǐn)?shù)開始。在給出的8個分?jǐn)?shù)中,學(xué)生能夠找到三對乘積是1的分?jǐn)?shù)。這項(xiàng)貌似游戲的活動凸顯了“倒數(shù)”是乘積為1的兩個數(shù)之間的關(guān)系,這正是建立倒數(shù)概念必須充分注意的內(nèi)涵。教材在三對乘積是1的分?jǐn)?shù)基礎(chǔ)上,指出“乘積是1的兩個數(shù)互為倒數(shù)”。學(xué)生準(zhǔn)確理解這句話的意思,不僅要知道互成“倒數(shù)”的兩個數(shù)的乘積是1,還要明白兩個數(shù)是“互為倒數(shù)”的。教材里三個卡通的交流,說的都是兩個分?jǐn)?shù)的乘積是1。下面的文字?jǐn)⑹鰪?qiáng)調(diào)兩個數(shù)“互為倒數(shù)”,還以3/8和8/3為例,引導(dǎo)學(xué)生體會“甲數(shù)是乙數(shù)的倒數(shù),乙數(shù)也是甲數(shù)的倒數(shù)”。
求已知數(shù)的倒數(shù)分三個層次教學(xué):先求3/5、2/3等分?jǐn)?shù)的倒數(shù),然后求5、1等整數(shù)的倒數(shù),最后是0沒有倒數(shù)。在第一個層次里,要求學(xué)生觀察互為倒數(shù)的兩個分?jǐn)?shù),發(fā)現(xiàn)它們的分子、分母剛好互換位置,一方面進(jìn)一步體會互為倒數(shù)的兩個數(shù)的乘積是1,另一方面找到了寫出一個數(shù)的倒數(shù)的方法。第二個層次寫出整數(shù)的倒數(shù)??梢詮母拍畛霭l(fā),尋找與這個整數(shù)相乘等于1的數(shù)。如果把整數(shù)看成分母是1的分?jǐn)?shù),就能像分?jǐn)?shù)那樣直接寫出它的倒數(shù)。第三個層次理解0沒有倒數(shù),并要求作出相應(yīng)的解釋。這是因?yàn)?和任何數(shù)相乘的積都是0,不存在與0相乘能夠得到1的數(shù)。
倒數(shù)的意義就是一句話:乘積是1的兩個數(shù)互為倒數(shù)。但是對于這句話的理解是有著比較豐富的內(nèi)涵的,這也就是概念內(nèi)涵的體現(xiàn)。這節(jié)課的教學(xué)流程分為這樣幾個基本塊面:首先通過例題7提出的問題——給出倒數(shù)的含義——分層突擊理解倒數(shù)含義——出示形式上的經(jīng)典錯例(特別是小數(shù)的倒數(shù))——處理1和0的問題(這是本節(jié)課的難點(diǎn))。
本文所談的不是教學(xué)流程上的問題,而是通過倒數(shù)這個概念,談一談對概念教學(xué)的理解,從拆句的角度,乘積是1的兩個數(shù)互為倒數(shù)拆為:乘積是1、兩個數(shù)、互為倒數(shù)。
針對倒數(shù)這個概念,我認(rèn)為:內(nèi)涵是指向正例的,外延是指向反例的。比如:書上出示乘積是1的正例,我們需要出示商、和、差是1的反例;書上說的是兩個數(shù)互為倒數(shù),沒有出示3個數(shù)的反例。這兩個反例是針對倒數(shù)概念本身的。
學(xué)生在倒數(shù)的答案呈現(xiàn)上,習(xí)慣于用等號表示“的倒數(shù)是”這樣的錯誤,比如2=1/2,從數(shù)學(xué)表達(dá)式上說這是非常明顯的錯誤,學(xué)生確實(shí)犯了,而且每屆都有這樣的情況,在今年的教學(xué)中我已經(jīng)強(qiáng)調(diào)并且糾正了這樣的錯誤,這說明教學(xué)方式對于不同學(xué)生是不一樣的,學(xué)生本身的理解和態(tài)度的端正與否也是重要的問題,需要引起重視。
本節(jié)課需要重視的第二個問題就是1和0的問題,這兩個問題實(shí)際上牽涉到其他的概念:假分?jǐn)?shù)、整數(shù)、自然數(shù)。假分?jǐn)?shù)分為1和大于1的假分?jǐn)?shù);整數(shù)和自然數(shù)里都有0,在這個問題上需要處理好,學(xué)生的理解需要通過不同的方式來體現(xiàn)。
單獨(dú)的概念教學(xué),或者說倒數(shù)概念本身不是一個很復(fù)雜的問題,有關(guān)倒數(shù)的知識主要包括兩點(diǎn):一點(diǎn)是倒數(shù)的意義,另一點(diǎn)是求倒數(shù)的方法。學(xué)生建立倒數(shù)的概念以后,求一個數(shù)的倒數(shù)就容易了。因此,例7十分重視概念的形成以及對概念的準(zhǔn)確把握。
相同的教學(xué)內(nèi)容,幾年的教學(xué)實(shí)踐下來,發(fā)現(xiàn):同樣的教學(xué)內(nèi)容,同樣的知識點(diǎn),為什么會出現(xiàn)這么大的差別?究其原因就是因?yàn)槲覀冃枰P(guān)注概念結(jié)構(gòu)出現(xiàn)的次序,比如:整數(shù)的概念是復(fù)習(xí)、假分?jǐn)?shù)的概念是辨析。
皮亞杰理論中認(rèn)知發(fā)展的三個基本過程——同化、順應(yīng)、平衡,對于倒數(shù)概念來說,學(xué)生之前毫無經(jīng)驗(yàn),是屬于順應(yīng),其實(shí)順應(yīng)更類似一個質(zhì)變的過程,有對于知識結(jié)構(gòu)的擴(kuò)展和修正,會形成一個新的認(rèn)知圖式。
但是本節(jié)課的教學(xué)難度不大,原因是這個知識點(diǎn)本身是不難的,從形式到本質(zhì),需要考慮的問題主要就是0,所以我在教學(xué)的時候特別關(guān)注了數(shù)字0的問題,然后在書本上39頁第19題的處理上特別強(qiáng)調(diào)了數(shù)字1的問題。
從整個概念系統(tǒng)來說,同化和順應(yīng)是相互依存的,如:本節(jié)課中倒數(shù)的概念是順應(yīng),而用到的外圍概念是整數(shù)、自然數(shù)、假分?jǐn)?shù),我在學(xué)習(xí)的時候注重對概念本身的解讀,數(shù)包括自然數(shù)和整數(shù),倒數(shù)的形式是分?jǐn)?shù),但不是分?jǐn)?shù)的整數(shù)和小數(shù)需要先轉(zhuǎn)化為最簡分?jǐn)?shù)之后再處理。
在概念的形式實(shí)現(xiàn)之后的環(huán)節(jié)就是對倒數(shù)概念的辨析,如:題目a都有倒數(shù),這句話本身是有問題的,但是我們關(guān)注的點(diǎn)應(yīng)該是a這個數(shù)的取值范圍,是取正整數(shù)?負(fù)整數(shù)?0?非正整數(shù)?非負(fù)整數(shù)?自然數(shù)?這里都是學(xué)生需要考慮的問題,其實(shí)有沒有倒數(shù)的核心概念就是:0沒有倒數(shù),但是對于具體的表現(xiàn)形式是我們需要花時間去思量的問題。
倒數(shù)的認(rèn)識教學(xué)反思100字 倒數(shù)的認(rèn)識教學(xué)反思優(yōu)缺點(diǎn)篇三
在學(xué)校舉行的教師“課堂大練兵”教學(xué)活動中,我上的是《倒數(shù)的認(rèn)識》,現(xiàn)就這節(jié)課的整個教學(xué)環(huán)節(jié)做如下反思:
《倒數(shù)的認(rèn)識》是在學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為后面學(xué)習(xí)分?jǐn)?shù)除法做準(zhǔn)備。核心內(nèi)容是“倒數(shù)的意義和求法”?!暗箶?shù)的意義”屬于概念的教學(xué),我認(rèn)為,只有讓學(xué)生關(guān)注基礎(chǔ)知識本身,讓學(xué)生在深入剖析“倒數(shù)的意義”的過程中,學(xué)會數(shù)學(xué)思考,體會解決問題所帶來的成功體驗(yàn),才能使學(xué)習(xí)真正成為學(xué)生的需要。本節(jié)課的教學(xué)難度不大,但是因?yàn)閷W(xué)生基礎(chǔ)太差,所以我在設(shè)計(jì)教學(xué)時力求所有的學(xué)生能聽得懂,學(xué)得進(jìn)去,盡量引導(dǎo)學(xué)生能在交流合作中再現(xiàn)知識發(fā)生的過程,提高學(xué)生的觀察分析和概括歸納的能力。
1、復(fù)習(xí)題合理,緊扣這節(jié)課的學(xué)習(xí)內(nèi)容,為這節(jié)課的學(xué)習(xí)做了很好的鋪墊。
2、學(xué)生能深入了解倒數(shù)的意義。明白“乘積是1的兩個數(shù)叫做互為倒數(shù)”,理解相互依存的概念。
3、歸納全面,教學(xué)緊湊,由簡入繁介紹了整數(shù)、小數(shù)、帶分?jǐn)?shù)、分?jǐn)?shù)的倒數(shù);0沒有倒數(shù),1的倒數(shù)是它本身。
4、豐富練習(xí)的形式。在充分利用教材的練習(xí)同時,我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,使學(xué)生在練習(xí)中鞏固,在練習(xí)提高。
1、在教學(xué)倒數(shù)的定義時,對于倒數(shù)的相互關(guān)系教學(xué)不夠深入,應(yīng)該讓學(xué)生多說。
2、學(xué)生活動環(huán)節(jié)不夠,參與太少。
3、在問題導(dǎo)入時提問不夠精準(zhǔn),應(yīng)明確分類條件。
4、小組合作效果不佳,反響不好。
5、知識點(diǎn)歸納留給學(xué)生自主完成,教師點(diǎn)撥即可,不要講太多。
倒數(shù)的認(rèn)識教學(xué)反思100字 倒數(shù)的認(rèn)識教學(xué)反思優(yōu)缺點(diǎn)篇四
本節(jié)課我根據(jù)課程標(biāo)準(zhǔn)和教學(xué)內(nèi)容設(shè)置了兩個學(xué)習(xí)目標(biāo),并為每一個學(xué)習(xí)目標(biāo)的完成,設(shè)計(jì)練習(xí)題,教學(xué)評一體。題型的設(shè)計(jì)緊扣目標(biāo),能及時檢測和反饋學(xué)生學(xué)習(xí)和掌握的情況。例如,目標(biāo)一是理解倒數(shù)的意義。
首先讓學(xué)生在口算練習(xí)中觀察、發(fā)現(xiàn)和總結(jié)出倒數(shù)的意義。為了加深學(xué)生對倒數(shù)意義的理解和檢測學(xué)生的掌握情況,緊跟著我設(shè)計(jì)了三道題目。
第1題是判斷,在三道判斷題目中再次加深對“乘積是1”“兩個數(shù)”“互為倒數(shù)”的理解,從而真正的明白倒數(shù)的意義。
第2題是口答,目的是讓學(xué)生能意識到乘積是1的兩個數(shù)互為倒數(shù),利用倒數(shù)的意義去解決問題。
第3題,利用倒數(shù)的意義,找出哪兩個數(shù)互為倒數(shù),等于還是對倒數(shù)意義的運(yùn)用的訓(xùn)練。那么在連續(xù)三種題型的中,想必孩子們對什么是倒數(shù)應(yīng)該是理解的已是非常的到位了,下面進(jìn)行目標(biāo)二的學(xué)習(xí),掌握求一個數(shù)的倒數(shù)的方法。對于目標(biāo)二的學(xué)習(xí),我是直接采用讓學(xué)生直接寫出下面幾個數(shù)的倒數(shù)的,因?yàn)槲蚁嘈诺箶?shù)意義只要理解到位,那么求出一個數(shù)的倒數(shù)應(yīng)該沒問題,這一環(huán)節(jié)的關(guān)鍵是要讓學(xué)生們總結(jié)出求一個數(shù)的倒數(shù)的方法,要求讓他們先相互說一說,這是這一環(huán)節(jié)的重點(diǎn)。
總結(jié)出求一個分?jǐn)?shù)的倒數(shù)后,當(dāng)然還要繼續(xù)驗(yàn)證也可以說還要解決不同類型數(shù)的倒數(shù),比如說小數(shù)的倒數(shù)怎么做,帶分?jǐn)?shù)的倒數(shù)怎么做,既是對分?jǐn)?shù)求倒數(shù)方法的驗(yàn)證也是一個新問題的解決,讓孩子們根據(jù)分?jǐn)?shù)與小數(shù)、帶分?jǐn)?shù)和整數(shù)的互化,來解決這個問題。最后是對整節(jié)課回顧與總結(jié),幫助學(xué)生梳理知識,反思自己的學(xué)習(xí)過程,領(lǐng)會學(xué)習(xí)方法,獲得數(shù)學(xué)學(xué)習(xí)的經(jīng)驗(yàn)。
總的來說,本節(jié)課不管從問題的設(shè)置還是練習(xí)題的設(shè)計(jì)上,對孩子們的思維訓(xùn)練都具有一定的連續(xù)性、跳躍性。教學(xué)設(shè)計(jì)我非常滿意,課堂效果也非常的精彩。
倒數(shù)的認(rèn)識教學(xué)反思100字 倒數(shù)的認(rèn)識教學(xué)反思優(yōu)缺點(diǎn)篇五
這節(jié)課經(jīng)過多次的實(shí)踐探索,我收獲了很多:
“節(jié)”就是課內(nèi)知識,“枝”就是在聯(lián)系課內(nèi)知識基礎(chǔ)上拓展開來的其他知識與問題。作為數(shù)學(xué)教師,在教學(xué)過程中要能根據(jù)知識本身的特征和課堂的實(shí)際需要,“節(jié)外生枝”,拓展課堂的空間,使課堂教學(xué)狀態(tài)靈動起來,內(nèi)容豐富起來。
《倒數(shù)的認(rèn)識》教材僅在整數(shù)和真、假分?jǐn)?shù)范圍內(nèi)教學(xué)倒數(shù),而后面分?jǐn)?shù)除法的計(jì)算方面也涉及到小數(shù)和帶分?jǐn)?shù)的倒數(shù)問題,把它提到前面來,大家一起研究,我覺得很有必要。所以教學(xué)倒數(shù)時,當(dāng)學(xué)生很高興的自認(rèn)為是掌握了求一個數(shù)的倒數(shù)的方法時,給學(xué)生設(shè)了障礙:怎樣求帶分?jǐn)?shù)、小數(shù)和整數(shù)的倒數(shù)。這樣,使學(xué)生避免把帶分?jǐn)?shù)的倒數(shù)也用把分子分母顛倒位置的方法來求,就不會給學(xué)生的認(rèn)知造成誤導(dǎo)。
“節(jié)外生枝”教數(shù)學(xué),將突破教材的限制,通過對教材深度與廣度的挖掘,拓寬數(shù)學(xué)學(xué)習(xí)的渠道,充分利用豐富的課程資源,加深學(xué)生對教材的理解,開拓學(xué)生的思維,培養(yǎng)學(xué)生的遷移能力,追求教材學(xué)習(xí)與拓展教學(xué)的相互促進(jìn)、相互補(bǔ)充、共生共長的效果。
弗賴登塔爾說:“數(shù)學(xué)作為人類的一種活動,它的主要特征是數(shù)學(xué)化?!睌?shù)學(xué)化過程,就是要把本質(zhì)屬性體現(xiàn)出來,去掉非本質(zhì)屬性。教師如果為了讓學(xué)生直觀地感受和理解倒數(shù)的概念,牽強(qiáng)地以“倒”為載體導(dǎo)入知識,表面看似聯(lián)系生活實(shí)際,實(shí)際卻沒有抓住倒數(shù)的數(shù)學(xué)本質(zhì)。這樣牽強(qiáng)附會的情境丟掉了數(shù)學(xué)知識的本質(zhì),干擾了教學(xué)。因此,情境創(chuàng)設(shè)不能牽強(qiáng)附會,不能因生活化而丟掉了數(shù)學(xué)本質(zhì)。
數(shù)學(xué)教學(xué)注重聯(lián)系生活實(shí)際、創(chuàng)設(shè)情境等并沒有錯,但設(shè)計(jì)這些,都只是為了使數(shù)學(xué)的發(fā)現(xiàn)過程逼真,更重要的工作,還是后面的數(shù)學(xué)化提煉。只有引導(dǎo)學(xué)生將數(shù)學(xué)知識從情境、生活等外在因素中提煉出來,形成數(shù)學(xué)特有的抽象或模式,學(xué)生學(xué)到的才是真實(shí)的數(shù)學(xué)知識,數(shù)學(xué)教學(xué)才算有效。
1、“循環(huán)小數(shù)”有沒有倒數(shù)?有沒有必要在課堂中進(jìn)行探討?有些老師認(rèn)為限于學(xué)生的現(xiàn)有知識水平,如果學(xué)生沒有提及,沒必要研究。
2、何時抽象概括a×=1更合適?有些老師認(rèn)為應(yīng)該在學(xué)生探究找分?jǐn)?shù)、整數(shù)和小數(shù)的倒數(shù)后,再提煉概括,a除了是整數(shù),也可以是分?jǐn)?shù)、小數(shù)。那么對于,a是分?jǐn)?shù)、小數(shù),學(xué)生理解嗎?教師又改如何引導(dǎo)呢?
倒數(shù)的認(rèn)識教學(xué)反思100字 倒數(shù)的認(rèn)識教學(xué)反思優(yōu)缺點(diǎn)篇六
倒數(shù)的認(rèn)識這部分內(nèi)容是在分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的。學(xué)習(xí)倒數(shù)主要是為后面學(xué)習(xí)分?jǐn)?shù)除法作準(zhǔn)備的。因?yàn)橐粋€數(shù)除以一個分?jǐn)?shù)的計(jì)算方法是歸結(jié)為乘這個分?jǐn)?shù)的倒數(shù)。所以學(xué)好這部分內(nèi)容對之后學(xué)習(xí)分?jǐn)?shù)除法是至關(guān)重要的。由于我是六年級數(shù)學(xué)組第一單元的把關(guān)教師,本課又是我的單元課,所以在課前,看了不少關(guān)于這課的教學(xué)設(shè)計(jì),覺得是五花八門,各有所長,最終根據(jù)我班學(xué)生的學(xué)習(xí)情況,設(shè)計(jì)了教學(xué)方案,取得了不錯的教學(xué)效果,主要表現(xiàn)在以下幾點(diǎn):
在本課的引入中,我通過談話讓學(xué)生了解對比相互的反義詞及位置交換,再通過讓男女學(xué)生計(jì)算小黑板不同的兩組乘法算式,觀察積的特點(diǎn)與算式中兩個因數(shù)的特點(diǎn),直接對倒數(shù)形成了初步的認(rèn)識,更明白了只要調(diào)換分子與分母的位置就會得到一個新的分?jǐn)?shù)。然后讓學(xué)生對具有這樣特點(diǎn)的兩個分?jǐn)?shù)起名,學(xué)生不約而同的叫它們倒數(shù)。為了使學(xué)生深入了解倒數(shù)的意義,我引導(dǎo)學(xué)生舉了大量分?jǐn)?shù)的例子,并通過觀察、計(jì)算等方法使學(xué)生明確“互為倒數(shù)的兩個數(shù)的乘積是1”、“倒數(shù)的兩個數(shù)只是把分子和分母的位置進(jìn)行調(diào)換”、更讓我高興的是學(xué)生能注意到“倒數(shù)是相互依存的”。抓住學(xué)生的這一發(fā)現(xiàn),我引導(dǎo)他們很快就總結(jié)出了倒數(shù)的概念——乘積是1的兩個數(shù)叫做互為倒數(shù)。在強(qiáng)調(diào)重點(diǎn)時,學(xué)生發(fā)現(xiàn)在數(shù)學(xué)上還有像倒數(shù)這樣的情況,如約數(shù)和倍數(shù),倒數(shù)也是相互依存的。
著名教育家蘇霍姆林斯基說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,那就是希望自己是一個發(fā)現(xiàn)者和探索者?!倍趦和男睦恚@種需求特別強(qiáng)烈。為了符合學(xué)生的這一心理特點(diǎn),我在教學(xué)求一個數(shù)的倒數(shù)的方法上讓學(xué)生以生問生答的形式進(jìn)行,在我的鼓勵下,學(xué)生開始是提出整數(shù)、真分?jǐn)?shù)、假分?jǐn)?shù),接著想到帶分?jǐn)?shù)、小數(shù),進(jìn)一步想到兩個特例1和0, 面對特殊的0和1這兩個數(shù)時,學(xué)生們出現(xiàn)了小小的“爭執(zhí)”。有人認(rèn)為:“0和1有倒數(shù)?!庇腥苏J(rèn)為:“0和1沒有倒數(shù)?!睂τ趯W(xué)生的“爭執(zhí)”我沒有直接介入,而是引導(dǎo)他們互相說說自己的理由,在他們的交流中,學(xué)生們達(dá)成了一致的認(rèn)識:0沒有倒數(shù),1的倒數(shù)是它本身。并且在說明理由時,學(xué)生還認(rèn)為“0不能做分母,所以0沒有倒數(shù)”,“0乘任何數(shù)都得0,不可能得到1”這兩個理由,拓展了我所提供給學(xué)生的知識內(nèi)容,學(xué)生在深入思考中得出結(jié)論,這就是學(xué)生學(xué)習(xí)的成果。我覺得,這樣做不僅增添了課堂活力,而且還讓學(xué)生經(jīng)歷了探索的過程,解決了學(xué)生的困惑,更讓學(xué)生體會到了成功的快樂。
本課我最大的收獲是學(xué)生自己進(jìn)行了充分的辯論,讓我驚喜萬分,感到十分高興,我覺的是本課最大的收獲,在學(xué)生的辯論在,連我都充滿了激情。我想,在教學(xué)中需要我充分預(yù)設(shè),放開手腳,這樣定能讓我的課堂煥發(fā)精彩。
倒數(shù)的認(rèn)識教學(xué)反思100字 倒數(shù)的認(rèn)識教學(xué)反思優(yōu)缺點(diǎn)篇七
《倒數(shù)的認(rèn)識》是在學(xué)生掌握了整數(shù)乘法、分?jǐn)?shù)加法和減法計(jì)算、分?jǐn)?shù)乘法的意義和計(jì)算法則、分?jǐn)?shù)乘法應(yīng)用題等知識的基礎(chǔ)上進(jìn)行教學(xué)的。理解倒數(shù)的意義和會求一個數(shù)的倒數(shù)是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法的前提。學(xué)生只有學(xué)好這部分知識,才能更好地掌握后面的分?jǐn)?shù)除法的計(jì)算和應(yīng)用題。
《倒數(shù)的認(rèn)識》這一課的核心內(nèi)容是“倒數(shù)的意義和求法”?!暗箶?shù)的意義”屬于概念的教學(xué),我認(rèn)為,只有讓學(xué)生關(guān)注基礎(chǔ)知識本身,讓學(xué)生在深入剖析“倒數(shù)的意義”的過程中,學(xué)會數(shù)學(xué)思考,體會解決問題所帶來的成功體驗(yàn),才能使學(xué)習(xí)真正成為學(xué)生的需要。
本節(jié)課我在設(shè)計(jì)教學(xué)時力求充分發(fā)揮學(xué)生學(xué)習(xí)的主動性和積極性,引導(dǎo)學(xué)生自主探索與交流合作中再現(xiàn)知識發(fā)生的過程,提高學(xué)生的觀察分析和概括歸納的能力,實(shí)現(xiàn)知識技能與學(xué)生智能的同步發(fā)展。通過這節(jié)課的實(shí)際教學(xué),結(jié)合新課標(biāo),也給了我不少啟示。
1、在課的導(dǎo)入部分,聯(lián)系學(xué)生熟悉的生活情景,由倒影和一些有趣的文字引出本節(jié)課所要探究的問題――倒數(shù),從形象直觀上感受顛倒位置,既激發(fā)了學(xué)生的探究興趣,為學(xué)生學(xué)習(xí)新知識做了充分的準(zhǔn)備,為學(xué)生較好理解倒數(shù)的意義做了鋪墊。
2、變例題教學(xué)為學(xué)生自學(xué)課本,發(fā)現(xiàn)求一個數(shù)的倒數(shù)的方法,然后通過舉例,檢查學(xué)生的掌握情況,再總結(jié)出求一個數(shù)的倒數(shù)的方法。
3、豐富練習(xí)的形式。在充分利用教材的練習(xí)同時,我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,使學(xué)生在練習(xí)中鞏固,在練習(xí)中提高。比如設(shè)計(jì)的“比較大小”,在比較大小之后,讓學(xué)生找找其中的規(guī)律,為接下來的分?jǐn)?shù)除法做鋪墊?!安乱徊隆?,不僅用到了倒數(shù)的知識,也聯(lián)系到前面學(xué)的分?jǐn)?shù)乘法應(yīng)用題。
1、給學(xué)生獨(dú)立思考的時間,相信學(xué)生能具有獨(dú)立思考的能力,教學(xué)中每一個問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。
2、給學(xué)生合作學(xué)習(xí)的機(jī)會;當(dāng)學(xué)生有困惑時,教師可以充分發(fā)揮學(xué)生集體智慧,引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。在教學(xué)中,我對于探求“整數(shù)有沒有倒數(shù)”、“0和1有沒有倒數(shù)”、“小數(shù)有沒有倒數(shù)”這幾個環(huán)節(jié),充分發(fā)揮學(xué)生合作交流的作用,去共同解決問題。
倒數(shù)的認(rèn)識教學(xué)反思100字 倒數(shù)的認(rèn)識教學(xué)反思優(yōu)缺點(diǎn)篇八
此次于老師來聽課,我按照教學(xué)進(jìn)度選擇的內(nèi)容是第四單元知識鏈接教材中《倒數(shù)的認(rèn)識》一課,這一節(jié)課是在學(xué)生學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,是為后面單元學(xué)習(xí)分?jǐn)?shù)除法知識做準(zhǔn)備。本節(jié)課的內(nèi)容不多,首先是用兩個數(shù)的乘積是1這樣的幾個算式來引出倒數(shù)的概念,然后是求一個數(shù)的倒數(shù)的方法。
本節(jié)課我的教學(xué)思路是:
第一大環(huán)節(jié):利用課前三分鐘的口算練習(xí)這一素材,可以按照乘積是否是1進(jìn)行分組整理,再將乘積是1的一類進(jìn)行二次分類,分成分?jǐn)?shù)乘法與小數(shù)乘法,先從比較直觀的分?jǐn)?shù)乘法入手研究因數(shù)的特征,繼而過渡到小數(shù)乘法算式中因數(shù)的特征,由發(fā)現(xiàn)到猜想再到舉例驗(yàn)證,繼而得出倒數(shù)的概念。
第二大環(huán)節(jié),由如何求一個數(shù)的倒數(shù)入手?引導(dǎo)學(xué)生交流方法,并在練習(xí)中鞏固求倒數(shù)的方法。
上完這節(jié)課,我的第一感覺是領(lǐng)著孩子繞著知識點(diǎn)走了一遍,用能力的孩子可能真的理解了倒數(shù)的意義,而大部分的孩子可能只是學(xué)會了求倒數(shù)的方法,至于是否真正理解了倒數(shù)的意義,還處于模棱兩可的狀態(tài)。結(jié)合著于老師的點(diǎn)評,再回頭看我這節(jié)課的設(shè)計(jì)流程,還真是存在著很大的問題:
本節(jié)課在研究分?jǐn)?shù)乘法這組算式的特征之后,我引導(dǎo)學(xué)生用“顛倒數(shù)”這樣的一個詞來反復(fù)描述兩個分?jǐn)?shù)的特征,而忽視了乘積是1的這一個大的背景。而如果從“為什么它們的乘積是1”這一個大問題入手,學(xué)生會順藤摸瓜,思考它們因數(shù)之間存在的特殊關(guān)系。
正是因?yàn)楸竟?jié)課,我一直在強(qiáng)調(diào)分?jǐn)?shù)的分子與分母相互顛倒這一點(diǎn),造成學(xué)生沒有真正從意義上理解倒數(shù)的意義,才會出現(xiàn)在+()=1這個加法算式中,有的學(xué)生填這一錯誤。
為了鞏固求一個數(shù)的倒數(shù),在練習(xí)這一環(huán)節(jié)我分四類設(shè)計(jì)并總結(jié)出:
(1)真分?jǐn)?shù)的倒數(shù)都是大于1的假分?jǐn)?shù);
(2)大于1的假分?jǐn)?shù)的倒數(shù)都是真分?jǐn)?shù);
(3)分?jǐn)?shù)單位的倒數(shù)都是自然數(shù);
(4)非零整數(shù)的倒數(shù)都是幾分之一。
反過頭來再看,真如于老師所說的那樣,學(xué)生根本沒有深刻的記憶,只是走馬觀花,但是如果按照于老師的建議,利用數(shù)軸的形式,在數(shù)軸上表示,我想即方便學(xué)生直觀認(rèn)識,也加深了學(xué)生的認(rèn)識。
非常感謝于老師能在百忙之中來聽評課,感謝于老師的指點(diǎn),借著這次聽課的東風(fēng),在教學(xué)路上且思且行!
倒數(shù)的認(rèn)識教學(xué)反思100字 倒數(shù)的認(rèn)識教學(xué)反思優(yōu)缺點(diǎn)篇九
“倒數(shù)的認(rèn)識”是一節(jié)概念教學(xué)課,這部分內(nèi)容是在學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的。理解倒數(shù)的意義,會求一個數(shù)的倒數(shù)是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法的前提。學(xué)生只有學(xué)好這部分知識,才能更好地掌握后面的分?jǐn)?shù)除法的計(jì)算和應(yīng)用題。
針對本課內(nèi)容,看似簡單,實(shí)質(zhì)內(nèi)涵非常豐富的特點(diǎn),結(jié)合本班學(xué)生大多數(shù)基礎(chǔ)薄弱的現(xiàn)狀。認(rèn)真思考了本節(jié)課中教學(xué)目標(biāo)和重、難點(diǎn)。力爭能讓學(xué)生聽的清楚,練的活潑,學(xué)的輕松。所以課前思考時從以下幾個方面入手。
1、本課的知識點(diǎn)
本課的學(xué)習(xí)內(nèi)容是“倒數(shù)的認(rèn)識”即對倒數(shù)的認(rèn)知與識別。如何能夠讓學(xué)生很清晰的明白倒數(shù)的意義呢?以及如何找準(zhǔn)一個數(shù)的倒數(shù)呢?
2、本課的關(guān)鍵點(diǎn)
《小學(xué)數(shù)學(xué)新課程標(biāo)準(zhǔn)》中指出既要關(guān)注學(xué)生的學(xué)習(xí)結(jié)果,又要關(guān)注學(xué)生的學(xué)習(xí)過程。對倒數(shù)的意義教學(xué),進(jìn)行了仔細(xì)的剖析,把意義分為幾個部分:“乘積是1”,“兩個數(shù)”,“互為倒數(shù)”這三個部分,看起來簡單,但是每個部分再仔細(xì)推敲,就發(fā)現(xiàn)“怎么才能得到1;幾個數(shù),是幾個什么樣的數(shù);“互為”如何理解呢?,在生活中有類似的思路可以遷移的事物嗎?這些方面對學(xué)生清楚理解倒數(shù)的意義非常重要。
3、本課的著力點(diǎn)
基于對關(guān)鍵點(diǎn)的認(rèn)真思考,發(fā)現(xiàn)“互為”一詞比另兩個關(guān)鍵點(diǎn)更難理解,難說的清楚。因此,必須在這個方面需要花功夫,下力氣,因?yàn)槔斫膺@一關(guān)鍵點(diǎn)是學(xué)生掌握倒數(shù)意義的標(biāo)志,也是幫助學(xué)生能識別“倒數(shù)”這一概念的方法之一。
4、本課的深化點(diǎn)(預(yù)設(shè))
基于對倒數(shù)的意義的思考,發(fā)現(xiàn)定義中的“兩個數(shù)”這一關(guān)鍵點(diǎn)的外延非常豐富,兩個怎樣的數(shù)呢?能不能 都是整數(shù)?能不能都是分?jǐn)?shù)?能不能都是小數(shù)?……有沒有特殊的數(shù)呢?比如整數(shù)都有倒數(shù)嗎?小數(shù)都有倒數(shù)嗎?分?jǐn)?shù)都有倒數(shù)嗎?因?yàn)檎麛?shù)中有0、1這樣特殊的數(shù),還有負(fù)整數(shù)。小數(shù)中有有限小數(shù)、無限小數(shù)、無限不循環(huán)小數(shù)。它們有沒有倒數(shù)這樣的情況課堂中學(xué)生會出現(xiàn)這些疑問嗎?出現(xiàn)了如何處理呢。如果不出現(xiàn)又如何處理呢。
1、創(chuàng)設(shè)情景導(dǎo)入新課
在課的導(dǎo)入部分,由一些有趣的文字引出本節(jié)課所要探究的問題----倒數(shù),從形象直觀上感受顛倒位置,既激發(fā)了學(xué)生的探究興趣,為學(xué)生學(xué)習(xí)新知識做了充分的準(zhǔn)備,為學(xué)生較好理解倒數(shù)的意義做了鋪墊。
2、合作探究學(xué)習(xí)
變例題教學(xué)為學(xué)生自學(xué)課本,找到倒數(shù)的意義,并與學(xué)生一起剖析,發(fā)現(xiàn)求一個數(shù)的倒數(shù)的方法,然后通過舉例,檢查學(xué)生的掌握情況,小組合作討論:0和1的倒數(shù)問題,再總結(jié)出求一個數(shù)的倒數(shù)的方法。
3、練習(xí)形式多樣
充分利用教材的練習(xí)同時,我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,使學(xué)生在練習(xí)中鞏固,在練習(xí)中提高。比如設(shè)計(jì)的“每人出題同桌互說”,讓學(xué)生不僅在課堂上學(xué),也在課堂上用,做到真正掌握。
通過教學(xué),我感受到教師在教學(xué)中應(yīng)相信學(xué)生的能力,并積極成為學(xué)生學(xué)習(xí)的合作者、幫助者和促進(jìn)者,教學(xué)中處理好扶與放的關(guān)系。
1、給學(xué)生獨(dú)立思考的時間;相信學(xué)生能具有獨(dú)立思考的能力,教學(xué)中每一個問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。
2、 給學(xué)生合作學(xué)習(xí)的機(jī)會;當(dāng)學(xué)生有困惑時,教師可以充分發(fā)揮學(xué)生集體智慧,引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。
在教學(xué)中,我對于探求“0和1有沒有倒數(shù)”環(huán)節(jié),充分發(fā)揮合作交流的作用,群策群力解決問題。為深入淺出的理解“互為”,我舉例“互為同桌”,“互為朋友”,讓學(xué)生覺得“互為”就在身邊,對于理解關(guān)鍵點(diǎn),就能引起共鳴。
在練習(xí)中,緊緊圍繞關(guān)鍵點(diǎn)設(shè)計(jì)了三條判斷練習(xí),讓學(xué)生在練習(xí)中明白成為倒數(shù)的條件,缺一不可。
3、存在的困惑與不足
通過本節(jié)課的教學(xué),我發(fā)現(xiàn):大部分學(xué)生能夠理解倒數(shù)的意義,掌握求一個數(shù)的倒數(shù)的方法,但有少數(shù)學(xué)生對于倒數(shù)的認(rèn)識,僅僅是停留在是不是分子、分母顛倒這一表面形式上,忽略了兩個數(shù)的乘積為1這一本質(zhì)條件,于是他們錯誤的認(rèn)為小數(shù)和帶分?jǐn)?shù)是沒有倒數(shù)的。后來,雖然大部分學(xué)生通過簡單的交流討論,明白了小數(shù)和帶分?jǐn)?shù)也是有倒數(shù)的,但是在找倒數(shù)時還是出現(xiàn)了0.5的倒數(shù)是5.0, 1 的倒數(shù)是1 錯誤的情況。
面對這樣的情況,我感覺有些困惑,為什么教材僅在整數(shù)和真、假分?jǐn)?shù)范圍內(nèi)教學(xué)倒數(shù)呢?后面分?jǐn)?shù)除法的計(jì)算方面也涉及到小數(shù)和帶分?jǐn)?shù)的倒數(shù)問題,我們在實(shí)際教學(xué)中是否需要補(bǔ)上相關(guān)的內(nèi)容呢?