又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當(dāng)前位置:網(wǎng)站首頁(yè) >> 作文 >> 2023年消元解二元一次方程組教案(實(shí)用16篇)

2023年消元解二元一次方程組教案(實(shí)用16篇)

格式:DOC 上傳日期:2023-11-26 21:20:06
2023年消元解二元一次方程組教案(實(shí)用16篇)
時(shí)間:2023-11-26 21:20:06     小編:薇兒

作為一位杰出的教職工,總歸要編寫教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。那么問(wèn)題來(lái)了,教案應(yīng)該怎么寫?下面是小編帶來(lái)的優(yōu)秀教案范文,希望大家能夠喜歡!

消元解二元一次方程組教案篇一

1、本節(jié)課是一堂概念課,設(shè)計(jì)時(shí)按照“實(shí)例研究、初步體會(huì)―類比分析,把握實(shí)質(zhì)――歸納概括,形成定義――應(yīng)用提高,發(fā)展能力”的思路進(jìn)行,讓學(xué)生體會(huì)到因?yàn)椤靶枰倍鴮W(xué)習(xí)新知識(shí),逐步滲透應(yīng)用意識(shí)。

2、二元一次方程及其解的意義類比一元一次方程進(jìn)行學(xué)習(xí),一方面加深學(xué)生對(duì)方程中“元”與“次”的理解,另一方面易于理清一元一次方程組有關(guān)概念的學(xué)習(xí)掃清障礙。

3、分層遞進(jìn),循環(huán)上升,學(xué)生對(duì)知識(shí)的理解,教師對(duì)學(xué)生的要求,都是由低到高,逐步提升,題目設(shè)計(jì)從單一知識(shí)點(diǎn)的直接用,逐漸對(duì)多個(gè)知識(shí)點(diǎn)的靈活運(yùn)用,給學(xué)生設(shè)置必要的'臺(tái)階,使其一步步向前,最終達(dá)到教學(xué)目標(biāo),充分尊重學(xué)生的認(rèn)識(shí)規(guī)律。

4、教師始終把自己放策劃者,引志者,引導(dǎo)者,促進(jìn)者的位置,注重學(xué)法指導(dǎo),把學(xué)生推向前臺(tái),使學(xué)生以探索者,研究者的身份穿梭于課堂,充分突出其主體地位,讓學(xué)生在學(xué)習(xí)中獲得成功,收獲自信,使其德智雙贏。

文檔為doc格式。

消元解二元一次方程組教案篇二

1、使學(xué)生會(huì)借助二元一次方程組解決簡(jiǎn)單的實(shí)際問(wèn)題,讓學(xué)生再次體會(huì)二元一次方程組與現(xiàn)實(shí)生活的聯(lián)系和作用2、通過(guò)應(yīng)用題教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性。

難點(diǎn):正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系。

一、復(fù)習(xí)。

列方程解應(yīng)用題的步驟是什么?

審題、設(shè)未知數(shù)、列方程、解方程、檢驗(yàn)并答。

新課:

看一看課本99頁(yè)探究1。

問(wèn)題:

1題中有哪些已知量?哪些未知量?

2題中等量關(guān)系有哪些?

3如何解這個(gè)應(yīng)用題?

本題的等量關(guān)系是(1)30只母牛和15只小牛一天需用飼料為675kg。

(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940。

練一練:

消元解二元一次方程組教案篇三

1、選自初一年級(jí)(下)數(shù)學(xué)學(xué)科第八章(第一單元)第一節(jié)(課)(1課時(shí)45分鐘)。

2、教材內(nèi)容簡(jiǎn)要分析。

教材以引言中的一個(gè)實(shí)際例子,“一班和二班進(jìn)行籃球比賽,總共打了22場(chǎng)。每勝一場(chǎng)得2分,每負(fù)一場(chǎng)得1分,已知比賽結(jié)束一班累計(jì)得了40分,思考:一班勝了多少場(chǎng),負(fù)了多少場(chǎng)”來(lái)開展這次課程。以本例來(lái)首先回憶已學(xué)過(guò)的一元一次方程的知識(shí)內(nèi)容,以此作為切入點(diǎn),引導(dǎo)學(xué)生思考用兩個(gè)未知數(shù)來(lái)表示方程,借此進(jìn)入二元一次方程的介紹。之后,引導(dǎo)學(xué)生利用一元一次方程的解法特點(diǎn)來(lái)思考二元一次方程組的解答方法,本次課程內(nèi)容主要介紹了代入解答法(也稱消元法)的詳細(xì)解答過(guò)程,以及二元一次方程組的實(shí)際運(yùn)用及解答,讓學(xué)習(xí)者更好的吸收及掌握二元一次方程組和二元一次方程組的消元法。另外,在本單元結(jié)束介紹了作為課外知識(shí)的“二元一次方程古代表示方法”。

3、學(xué)習(xí)內(nèi)容分析表:

知識(shí)點(diǎn)。

重點(diǎn)。

難點(diǎn)。

編號(hào)。

內(nèi)容。

1

2

代入消元法。

代入消元法的具體解法。

3

以實(shí)際例題列出方程并解答。

未知數(shù)的假設(shè)以及運(yùn)用已知條件列出正確方程。

本次教學(xué)的對(duì)象是云南省某中學(xué)的初中一年級(jí)學(xué)生,平均年齡12歲。初一年級(jí)是學(xué)生由幼稚的童年向青年轉(zhuǎn)化和個(gè)性逐漸成型的重要轉(zhuǎn)折點(diǎn),初一年級(jí)學(xué)生具有其特殊性。初一年級(jí)學(xué)生由于剛剛接觸完全不同于小學(xué)的學(xué)習(xí)生活而有手足無(wú)措的情況。而在這個(gè)時(shí)期的學(xué)生生理和心理飛速發(fā)展變化,自我意識(shí)開始強(qiáng)烈,有了自己的興趣,獨(dú)立性增強(qiáng),感情趨于豐富復(fù)雜化,有一定獨(dú)立思考的能力、一定程度的抽象思維能力和邏輯思維能力,處于識(shí)記能力最強(qiáng)的時(shí)期。此時(shí),進(jìn)行的教育可以更加重視獨(dú)立思考,在數(shù)學(xué)教學(xué)中更加重視引導(dǎo)教學(xué),致使學(xué)習(xí)者能夠更加深刻的理解所學(xué)知識(shí),達(dá)到教學(xué)目標(biāo)。

1、教學(xué)順序。

(1)復(fù)習(xí)已學(xué)過(guò)的一元一次方程知識(shí)引入開篇實(shí)例。

(3)以二元一次方程的方法建立方程,進(jìn)而介紹二元一次方程組的定義及特點(diǎn)并鞏固。

(5)介紹二元一次方程組消元法的運(yùn)用,并進(jìn)行隨堂練習(xí)以及隨堂解答。

(6)在確定學(xué)生掌握消元法后進(jìn)入二元一次方程組的實(shí)例運(yùn)用講解以及隨堂練習(xí)。

(7)復(fù)習(xí)、回憶、鞏固本次課程的主要內(nèi)容,介紹課外延伸內(nèi)容。

2、教學(xué)活動(dòng)程序。

(1)引起注意。

以“上課”號(hào)令以及播放ppt喚起學(xué)習(xí)者的注意。

(2)告訴學(xué)習(xí)者目標(biāo)。

以ppt的播放以及言語(yǔ)刺激,明確告訴學(xué)習(xí)者本次課的內(nèi)容是學(xué)習(xí)二元一次方程組,本次學(xué)習(xí)的目標(biāo)是掌握二元一次方程組的消元法以及二元一次方程的實(shí)例運(yùn)用。

(3)刺激對(duì)先前知識(shí)的回憶。

回憶之前學(xué)過(guò)的一元一次方程的主要內(nèi)容(定義、解法、實(shí)際運(yùn)用),以實(shí)例進(jìn)行先前內(nèi)容的回憶并且充分利用原有的認(rèn)知結(jié)構(gòu)中關(guān)于一元一次方程的列式觀念來(lái)與新學(xué)的二元一次方程產(chǎn)生共鳴。

(4)呈現(xiàn)刺激材料。

在講解過(guò)程中伴隨著ppt的播放,并在關(guān)鍵需要注意的部分進(jìn)行板書強(qiáng)調(diào),在語(yǔ)調(diào)上有所突出。

(5)提供學(xué)習(xí)指導(dǎo)。

以教材內(nèi)容為指導(dǎo),以及教師的提示語(yǔ)和示范性行為等進(jìn)行引導(dǎo)。

(6)誘導(dǎo)行為。

在重點(diǎn)部分題型注意,進(jìn)行隨堂練習(xí),分為詳細(xì)解答和對(duì)答案兩種方式。在詳細(xì)解答時(shí)要求同學(xué)與老師一同進(jìn)行,必要時(shí)提問(wèn)同學(xué),讓學(xué)習(xí)者參與進(jìn)來(lái),更好的理解信息并掌握學(xué)習(xí)內(nèi)容。

(7)提供反饋。

在學(xué)習(xí)者作出反應(yīng)、表現(xiàn)出行為之后,及時(shí)讓學(xué)習(xí)者知道學(xué)習(xí)結(jié)果,從而使學(xué)習(xí)者能肯定自己的理解與行為正確與否,以便及時(shí)更正。

(8)評(píng)定行為。

以隨堂測(cè)驗(yàn)的方式進(jìn)行隨堂評(píng)定,并且在課后布置習(xí)題讓同學(xué)們課后完成,再由教師進(jìn)行評(píng)定。

(9)增強(qiáng)記憶與促進(jìn)遷移。

設(shè)置教學(xué)活動(dòng)(見(jiàn)附錄),強(qiáng)化刺激,為學(xué)習(xí)者加深印象,并且促使其發(fā)散思維,將學(xué)習(xí)的知識(shí)廣泛運(yùn)用。

3、教學(xué)組織形式。

本次教學(xué)中選擇運(yùn)用了以下幾種教學(xué)組織形式。

(1)講解的形式。

以教師的說(shuō)明和解釋為主,向?qū)W生傳輸新信息,是本次教學(xué)主要形式,因本次教學(xué)內(nèi)容的特征,這種形式能夠全面詳細(xì)的解釋本次教學(xué)內(nèi)容,并能充分發(fā)揮教師的引導(dǎo)作用。

(2)提問(wèn)的形式。

這一形式能夠在教學(xué)過(guò)程中起到刺激課堂,引起學(xué)習(xí)者注意的作用,并且是對(duì)學(xué)習(xí)者某一知識(shí)學(xué)習(xí)情況的抽樣調(diào)查,由教師找出學(xué)習(xí)者存在的問(wèn)題進(jìn)行解決。

(3)師生共同解答的形式。

采用這個(gè)形式能夠在師生之間產(chǎn)生共鳴,提起課堂氣氛,產(chǎn)生共鳴,引起注意,使大部分學(xué)習(xí)者都參與進(jìn)來(lái),也是一個(gè)小型頭腦風(fēng)暴過(guò)程,在學(xué)習(xí)者之間互相影響,從而對(duì)知識(shí)得到正確理解。

4、教學(xué)方法的選擇。

本次課程選擇運(yùn)用了講授法、演示法、練習(xí)法的教學(xué)方法。

(1)語(yǔ)言的方法—講授法,主要是根據(jù)教學(xué)目標(biāo)和教學(xué)任務(wù),數(shù)學(xué)這門學(xué)科的解釋性強(qiáng)的特點(diǎn)以及這個(gè)學(xué)習(xí)階段的學(xué)習(xí)者的自學(xué)能力不夠然而接受能力很強(qiáng)的特點(diǎn)而選擇的。

(2)直觀的方法—演示法,順應(yīng)時(shí)代的發(fā)展,教學(xué)中出現(xiàn)了利用新媒體的需要,并且,對(duì)于這個(gè)階段的學(xué)習(xí)者,在課程開展中利用ppt來(lái)進(jìn)行演示可以更加有效的刺激學(xué)習(xí)者感官,并且配合適當(dāng)?shù)陌鍟?,?duì)于這個(gè)年齡段的學(xué)習(xí)者更加容易接受,同時(shí)也由于我們已經(jīng)具備了采用新媒體的條件。在課后,會(huì)以電子雜志的形式形成重點(diǎn)復(fù)習(xí)資料留給學(xué)習(xí)者課后復(fù)習(xí)。

(3)實(shí)踐的方法—練習(xí)法,包括了口頭練習(xí)和書面練習(xí)??陬^練習(xí)是這個(gè)年齡段學(xué)習(xí)者心理特征的需要,因?yàn)樗麄儶?dú)立性還不夠強(qiáng),在進(jìn)行口頭練習(xí)的時(shí)候,比較能夠跟上大多數(shù)人的思維,產(chǎn)生共鳴。書面練習(xí)是這個(gè)學(xué)科特征的需要,必須進(jìn)行書面練習(xí)才能讓同學(xué)們更好的掌握所學(xué)知識(shí),隨堂練習(xí)能及時(shí)反映出當(dāng)場(chǎng)學(xué)習(xí)的狀況。

消元解二元一次方程組教案篇四

掌握二元一次方程和二元一次方程組及它們的解的概念,會(huì)用消元法解方程組。

過(guò)程與方法。

能根據(jù)方程組的特點(diǎn)選擇合適的方法解方程組;并能把相應(yīng)問(wèn)題轉(zhuǎn)化為解方程組。

情感、態(tài)度與價(jià)值觀。

培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的能力,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的快樂(lè)。

掌握二元一次方程和二元一次方程組及它們的解的概念,會(huì)用消元法解方程組。

選擇合適的方法解方程組;并能把相應(yīng)問(wèn)題轉(zhuǎn)化為解方程組。

多媒體,小組評(píng)比。

設(shè)計(jì)意圖:知識(shí)回顧,掌握知識(shí)要點(diǎn),為順利完成練習(xí)打下基礎(chǔ)。

教學(xué)手段與方法:每小組必答題,答對(duì)為小組的一分,調(diào)動(dòng)學(xué)習(xí)的積極性。

基礎(chǔ)知識(shí)達(dá)標(biāo)訓(xùn)練。

教學(xué)手段與方法:

毎小組選代表講解為小組加分,充分調(diào)動(dòng)學(xué)生的積極性。學(xué)生講解不到位的老師補(bǔ)充。

消元解二元一次方程組教案篇五

4進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題,解決問(wèn)題的能力。

難點(diǎn):正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系。

課前自主學(xué)習(xí)。

1.列方程組解應(yīng)用題是把未知轉(zhuǎn)化為已知的重要方法,它的關(guān)鍵是把已知量和未知量聯(lián)系起來(lái),找出題目中的()。

2.一般來(lái)說(shuō),有幾個(gè)未知量就必須列幾個(gè)方程,所列方程必須滿足:

(1)方程兩邊表示的是()量。

(2)同類量的單位要()。

(3)方程兩邊的數(shù)值要相符。

3.列方程組解應(yīng)用題要注意檢驗(yàn)和作答,檢驗(yàn)不僅要求所得的解是否(),更重要的是要檢驗(yàn)所求得的結(jié)果是否()。

4.一個(gè)籠中裝有雞兔若干只,從上面看共42個(gè)頭,從下面看共有132只腳,則雞有(),兔有()。

新課探究。

看一看。

課本113頁(yè)探究1。

問(wèn)題:

1題中有哪些已知量?哪些未知量?

2題中等量關(guān)系有哪些?

3如何解這個(gè)應(yīng)用題?

本題的等量關(guān)系是(1)()。

(2)()。

解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg。

根據(jù)題意列方程,得。

答:每只母牛和每只小牛1天各需用飼料為()和(),飼料員李大叔估計(jì)每天母牛需用飼料1820千克,每只小牛一天需用7到8千克與計(jì)算()出入。(有或沒(méi)有)。

練一練:

小結(jié)。

用方程組解應(yīng)用題的一般步驟是什么?

消元解二元一次方程組教案篇六

2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型20xx年-20xx學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)20xx年-20xx學(xué)年七年級(jí)數(shù)學(xué)下冊(cè)全冊(cè)教案(人教版)。

3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來(lái)未知轉(zhuǎn)達(dá)化為已知的辯證思想。

2.徹底理解題意。

一、情境引入。

二、建立模型。

1.怎樣設(shè)未知數(shù)?

2.找本題等量關(guān)系?從哪句話中找到的?

3.列方程組。

4.解方程組。

5.檢驗(yàn)寫答案。

三、練習(xí)。

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。

(3)已知關(guān)于求x、y的方程,

2.p38練習(xí)第1題。

四、小結(jié)。

五、作業(yè)。

消元解二元一次方程組教案篇七

2、通過(guò)應(yīng)用題教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性。

正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系。

一、復(fù)習(xí)。

列方程解應(yīng)用題的步驟是什么?

審題、設(shè)未知數(shù)、列方程、解方程、檢驗(yàn)并答。

新課:

看一看課本99頁(yè)探究1。

問(wèn)題:

1題中有哪些已知量?哪些未知量?

2題中等量關(guān)系有哪些?

3如何解這個(gè)應(yīng)用題?

本題的等量關(guān)系是(1)30只母牛和15只小牛一天需用飼料為675kg。

(2)(30+12只母牛和(15+5)只小牛一天需用飼料為940。

練一練:

消元解二元一次方程組教案篇八

1.知識(shí)與能力目標(biāo)。

(3)通過(guò)學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時(shí)培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。

2.情感態(tài)度價(jià)值觀目標(biāo)。

通過(guò)學(xué)生的自主探索,提示出方程和圖象之間的對(duì)應(yīng)關(guān)系,加強(qiáng)新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索與創(chuàng)造。

教材分析。

前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識(shí)的綜合運(yùn)用。強(qiáng)化了部分與整體的內(nèi)在聯(lián)系,知識(shí)與知識(shí)的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。

教學(xué)重點(diǎn)。

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

教學(xué)難點(diǎn)。

方程和函數(shù)之間的對(duì)應(yīng)關(guān)系即數(shù)形結(jié)合的意識(shí)和能力。

教學(xué)方法。

學(xué)生操作------自主探索的方法。

消元解二元一次方程組教案篇九

本節(jié)內(nèi)容是在學(xué)生掌握了二元一次方程組的解法,能列二元一次方程組解較簡(jiǎn)單的應(yīng)用題的基礎(chǔ)上安排的,其中的“牛飼料問(wèn)題”“種植計(jì)劃問(wèn)”“成本與產(chǎn)出問(wèn)題”是具有一定綜合性的問(wèn)題,涉及到估算與精確計(jì)算的比較、開放地探索設(shè)計(jì)方案、根據(jù)圖表信息列方程組等問(wèn)題形式。由于本節(jié)需要探究的問(wèn)題比較復(fù)雜,所以在教學(xué)的過(guò)程中,一方面需要設(shè)置部分臺(tái)階減小坡度、分散難點(diǎn),另一方面需要用一些具體的方法引導(dǎo)學(xué)生學(xué)會(huì)分析和表達(dá),還要留給學(xué)生充足的思考、交流、整理、反思的時(shí)間。在解決問(wèn)題的過(guò)程中,使學(xué)生體會(huì)到方程組應(yīng)用的廣泛性與有效性,提高分析解決問(wèn)題的能力。

根據(jù)我校農(nóng)村學(xué)校學(xué)生的具體學(xué)習(xí)情況和認(rèn)知特點(diǎn),本節(jié)內(nèi)容設(shè)計(jì)為3個(gè)教學(xué)課時(shí),第一課時(shí)主要引導(dǎo)學(xué)生探索列方程組解應(yīng)用題的步驟和基本思路;第二課時(shí)主要進(jìn)行綜合性應(yīng)用問(wèn)題的探索;第三課時(shí)主要進(jìn)行思維拓展和鞏固提高。

(一)知識(shí)與技能

1、會(huì)用二元一次方程組解決生產(chǎn)生活中的實(shí)際問(wèn)題;

2、用方程組的數(shù)學(xué)模型刻畫現(xiàn)實(shí)生活中的實(shí)際問(wèn)題。

(二)過(guò)程與方法

1、培養(yǎng)學(xué)生應(yīng)用方程解決實(shí)際問(wèn)題的意識(shí)和應(yīng)用數(shù)學(xué)的能力;

2、將解方程組的技能訓(xùn)練與解決實(shí)際問(wèn)題融為一體,進(jìn)一步提高解方程組的技能。

(三)情感態(tài)度與價(jià)值觀

1、體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效模型,培養(yǎng)應(yīng)用數(shù)學(xué)的意識(shí)。

2、在用方程組解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)的實(shí)用性,提高學(xué)習(xí)數(shù)學(xué)的興趣。

3、結(jié)合實(shí)際問(wèn)題,培養(yǎng)學(xué)生關(guān)注生產(chǎn)勞動(dòng)、熱愛(ài)生活的意識(shí),讓學(xué)生重視數(shù)學(xué)知識(shí)與實(shí)際生活的聯(lián)系。

教學(xué)重點(diǎn):根據(jù)題意找出等量關(guān)系,列二元一次方程組。

教學(xué)難點(diǎn):正確找出問(wèn)題中的兩組等量關(guān)系。

4.1第一學(xué)時(shí)

教學(xué)活動(dòng)

公園一角三個(gè)學(xué)生的對(duì)話:甲:昨天,我們一家8個(gè)人去公園玩,買門票花了34元。乙:哦,那你們家去了幾個(gè)大人?幾個(gè)小孩呢?丙:真笨,自已不會(huì)算嗎?成人票5元每人,小孩3元每人啊!

(設(shè)計(jì)說(shuō)明:利用學(xué)生熟悉的公園購(gòu)票設(shè)計(jì)一個(gè)簡(jiǎn)單的問(wèn)題,在解決這個(gè)問(wèn)題的同時(shí),使學(xué)生熟悉列方程解應(yīng)用題的一般步驟,以及解二元一次方程組常用的方法,為下一步的探究做好準(zhǔn)備。)

解:設(shè)大人為x人,小孩為y人,依題意得

x+y=8 ①

5x+3y=34 ②

解得

x=5

y=3

答:大人5人,小孩3人。

注:對(duì)列出的不同形式的方程組及其解法作簡(jiǎn)要的比較說(shuō)明,有意識(shí)的引導(dǎo)學(xué)生體會(huì)解決問(wèn)題方法的多樣性及方法選擇的重要性。

(教學(xué)說(shuō)明:以此活動(dòng)創(chuàng)設(shè)一個(gè)學(xué)生感興趣的情景,教師提出問(wèn)題,學(xué)生嘗試解答,兩名學(xué)生板演,結(jié)合板演訂正,提醒學(xué)生注意選擇簡(jiǎn)單的方法解方程組,避免重列輕解現(xiàn)象的發(fā)生。)

問(wèn)題1:怎樣判斷李大叔的估計(jì)是否正確?

(設(shè)計(jì)說(shuō)明:引導(dǎo)學(xué)生探尋解題思路,并對(duì)各種方法進(jìn)行比較,方法一主要是要估算的運(yùn)用,而方法二是方程思想的應(yīng)用學(xué)生在比較探究后發(fā)現(xiàn)用方法二較簡(jiǎn)便,思路明確之后進(jìn)一步考慮具體解答問(wèn)題)

判斷李大叔的估計(jì)是否正確的方法有兩種:

1、先假設(shè)李大叔的估計(jì)正確,再根據(jù)問(wèn)題中給定的數(shù)量關(guān)系來(lái)檢驗(yàn)。

2、根據(jù)問(wèn)題中給定的數(shù)量關(guān)系求出平均每只母牛和每只小牛1天各約需用飼料量,再來(lái)判斷李大叔的估計(jì)是否正確。

(教學(xué)說(shuō)明:教師提出問(wèn)題,讓學(xué)生討論交流,在此過(guò)程中可以逐步理解題意,找到解決問(wèn)題的方法)

問(wèn)題2 思考:題目中有哪些已知量?哪些未知量?等量關(guān)系有哪些?

(設(shè)計(jì)說(shuō)明:利用思考中的問(wèn)題,引導(dǎo)學(xué)生分析題目中的數(shù)量關(guān)系,逐步將學(xué)生的思維引向問(wèn)題的核心,從而順利解決問(wèn)題。)

分析:本題的等量關(guān)系是

(1)30只母牛和15只小牛一天需用飼料為675kg

(2)(30+12)只母牛和(15+5)只小牛一天需用飼料為940kg

(教學(xué)說(shuō)明:教師先讓學(xué)生自己閱讀思考,然后同學(xué)之間互相交流,最后師生共同得出結(jié)論)

問(wèn)題3 如何解這個(gè)應(yīng)用題?

(設(shè)計(jì)說(shuō)明:在學(xué)生正確理解題意,把握題中數(shù)量關(guān)系的基礎(chǔ)上寫出解答過(guò)程,一方面可以進(jìn)一步梳理思路,熟悉解答過(guò)程,另一方面把想和做統(tǒng)一起來(lái),在做的過(guò)程中發(fā)展計(jì)算、表達(dá)等多種能力。)

解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg根據(jù)題意列方程組,得

30x+15y=675 ①

(30+12)x+(15+5)y=940 ②

化簡(jiǎn)得

2x+y=45

2.1x+y=47

解這個(gè)方程組得

x=20

y=5

答:每只母牛和每只小牛1天各需用飼料為20kg和5kg,因此,飼養(yǎng)員李大叔對(duì)大牛的食量估計(jì)較準(zhǔn)確,對(duì)小牛的食量估計(jì)偏高。

(教學(xué)說(shuō)明:學(xué)生在寫解答過(guò)程時(shí),教師重點(diǎn)關(guān)注學(xué)習(xí)有困難的學(xué)生,同時(shí)平時(shí)做事不認(rèn)真規(guī)范的同學(xué)也是重點(diǎn)關(guān)注對(duì)象。完成之后針對(duì)出線的問(wèn)題及時(shí)點(diǎn)評(píng),使學(xué)生形成良好的學(xué)習(xí)習(xí)慣。)

問(wèn)題3 總結(jié):列方程組解應(yīng)用題的一般步驟及需要注意的問(wèn)題。

(設(shè)計(jì)說(shuō)明:?jiǎn)栴}解決之后及時(shí)回顧反思,能更清晰的發(fā)現(xiàn)存在的問(wèn)題及需要改進(jìn)的地方,便于學(xué)生自查、自悟,找到適合自己的學(xué)習(xí)方法)

審:弄清題目中的數(shù)量關(guān)系;

設(shè):設(shè)出兩個(gè)未知數(shù);

列:分析題意,找出兩個(gè)等量關(guān)系,根據(jù)等量關(guān)系列出方程組;

解:解出方程組,求出未知數(shù)的值;

驗(yàn):檢驗(yàn)求得的值是否正確和符合實(shí)際情形;

答:寫出答案(有時(shí)要分別作答)。

(設(shè)計(jì)說(shuō)明:通過(guò)不同形式的情境設(shè)置,從不同的角度幫助學(xué)生進(jìn)一步加深對(duì)列方程組解決應(yīng)用問(wèn)題的認(rèn)識(shí),形成初步技能。針對(duì)學(xué)習(xí)后進(jìn)的學(xué)生降低了解方程組的難度,有利于這部分學(xué)生把主要精力用于學(xué)習(xí)列方程組的方法步驟上。)

那2米和1米的各應(yīng)多少段?

解:設(shè)2米的有x段,1米的有y段,根據(jù)題意,得

x+y=10 ①

2x+y=18 ②

解得

x=8

y=2

答:小明估計(jì)不準(zhǔn)確,2米長(zhǎng)的8段,1米長(zhǎng)的2段。

(說(shuō)明:通過(guò)從不同的角度幫助學(xué)生進(jìn)一步加深對(duì)列方程組解決應(yīng)用問(wèn)題的認(rèn)識(shí),鞏固初步形成的技能。要求學(xué)生自主解決,以此檢驗(yàn)學(xué)生掌握情況和本堂課的教學(xué)效果,為第二課時(shí)教學(xué)奠定基礎(chǔ)。)

1、本節(jié)課你學(xué)習(xí)了什么?(利用列二元一次方程組解決實(shí)際問(wèn)題。)

2、列二元一次方程組解決實(shí)際問(wèn)題的主要步驟是什么?(審、設(shè)、列、解、驗(yàn)、答。)

3、列二元一次方程組解決實(shí)際問(wèn)題應(yīng)注意哪些問(wèn)題?

(1)認(rèn)真審題,用數(shù)學(xué)語(yǔ)言或式子表示題目中的數(shù)量關(guān)系。

(2)解出方程組時(shí)要選擇適當(dāng)?shù)姆椒?,運(yùn)算速度要快,準(zhǔn)確度要高。

(3)要按要求寫出答案。

課外作業(yè):p101復(fù)習(xí)鞏固第1題、第2題、第3題。

在這節(jié)課之前的學(xué)習(xí)中,學(xué)生已經(jīng)了解了一些用方程組表示問(wèn)題中的條件及解方程組的相關(guān)知識(shí),而且探究了用方程組解決具有現(xiàn)實(shí)意義的實(shí)際問(wèn)題。因此,這一節(jié)課共安排了四個(gè)貼近實(shí)際問(wèn)題的情境活動(dòng):活動(dòng)一:逛公園,提起學(xué)生興趣導(dǎo)入實(shí)際問(wèn)題,數(shù)量關(guān)系較為簡(jiǎn)單;活動(dòng)一:參觀農(nóng)場(chǎng),幫助李大叔計(jì)算驗(yàn)證,數(shù)量關(guān)系的難度有所提高,活動(dòng)中總結(jié)列二元一次方程組解決實(shí)際問(wèn)題的主要步驟,同時(shí)含有關(guān)注農(nóng)業(yè)生產(chǎn)的思想;活動(dòng)三:工廠鍛煉——知識(shí)應(yīng)用和活動(dòng)四:大顯身手——拓展提高。主要通過(guò)從不同的角度幫助學(xué)生進(jìn)一步加深對(duì)列方程組解決應(yīng)用問(wèn)題的認(rèn)識(shí),鞏固初步形成的技能。

這節(jié)課更為關(guān)注建立二元一次方程組數(shù)學(xué)模型的“探索”過(guò)程。它不僅為解決實(shí)際問(wèn)題提供了重要的策略,而且為數(shù)學(xué)交流提供了有效的途徑,它的模型化的方法,合理優(yōu)化的思想意識(shí)為學(xué)生解決實(shí)際問(wèn)題提供了理論上的科學(xué)依據(jù)。所以我覺(jué)得設(shè)計(jì)此課的重點(diǎn)應(yīng)該是使學(xué)生在探究如何用二元一次方程組解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步提高分析問(wèn)題中的數(shù)量關(guān)系、設(shè)未知數(shù)、列方程組并解方程組、檢驗(yàn)結(jié)果的合理性等能力,感受建立數(shù)學(xué)模型的作用。教學(xué)中我應(yīng)該根據(jù)學(xué)生的實(shí)際,選取學(xué)生熟悉的背景,讓學(xué)生體會(huì)數(shù)學(xué)建模的思想。在教學(xué)中應(yīng)發(fā)揮自主學(xué)習(xí)的積極性,引導(dǎo)學(xué)生先獨(dú)立探究,再進(jìn)行合作交流。

在此教學(xué)過(guò)程中,要熟練掌握多媒體課件的使用流程,充分發(fā)揮圖片資料創(chuàng)設(shè)情境和提高學(xué)生學(xué)習(xí)興趣的作用。

消元解二元一次方程組教案篇十

1.會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。

2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型。

3.引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),滲透將來(lái)未知轉(zhuǎn)達(dá)化為已知的辯證思想。

1.列二元一次方程組解簡(jiǎn)單問(wèn)題。

2.徹底理解題意

找等量關(guān)系列二元一次方程組。

1.怎樣設(shè)未知數(shù)?

2.找本題等量關(guān)系?從哪句話中找到的?

3.列方程組。

4.解方程組。

5.檢驗(yàn)寫答案。

思考:怎樣用一元一次方程求解?

比較用一元一次方程求解,用二元一次方程組求解誰(shuí)更容易?

1.根據(jù)問(wèn)題建立二元一次方程組。

(1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

(2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。

(3)已知關(guān)于求x、y的方程,

是二元一次方程。求a、b的值。

2.p38練習(xí)第1題。

小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?

p42。習(xí)題2.3a組第1題。

后記:

2.3二元一次方程組的應(yīng)用(2)

消元解二元一次方程組教案篇十一

(2)通過(guò)“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力.

(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.

(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過(guò)程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力.

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).

教具:多媒體課件、三角板.

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

第一環(huán)節(jié):設(shè)置問(wèn)題情境,啟發(fā)引導(dǎo)(5分鐘,學(xué)生回答問(wèn)題回顧知識(shí))。

內(nèi)容:1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?

2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?

3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?

由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):

(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;。

(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系(10分鐘,教師引導(dǎo)學(xué)生解決)。

內(nèi)容:1.解方程組。

2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像.

(1)求二元一次方程組的.解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);。

(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.

(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.

第三環(huán)節(jié)典型例題(10分鐘,學(xué)生獨(dú)立解決)。

探究方程與函數(shù)的相互轉(zhuǎn)化。

內(nèi)容:例1用作圖像的方法解方程組。

例2如圖,直線與的交點(diǎn)坐標(biāo)是.

第四環(huán)節(jié)反饋練習(xí)(10分鐘,學(xué)生解決全班交流)。

內(nèi)容:1.已知一次函數(shù)與的圖像的交點(diǎn)為,則.

2.已知一次函數(shù)與的圖像都經(jīng)過(guò)點(diǎn)a(—2,0),且與軸分別交于b,c兩點(diǎn),則的面積為().

(a)4(b)5(c)6(d)7。

3.求兩條直線與和軸所圍成的三角形面積.

4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?

第五環(huán)節(jié)課堂小結(jié)(5分鐘,師生共同總結(jié))。

內(nèi)容:以“問(wèn)題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:

(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;。

(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:

(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);。

(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;。

(1)代入消元法;。

(2)加減消元法;。

(3)圖像法.要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.

第六環(huán)節(jié)作業(yè)布置。

習(xí)題7.7a組(優(yōu)等生)1、2、3b組(中等生)1、2c組1、2。

附:板書設(shè)計(jì)。

六、教學(xué)反思。

消元解二元一次方程組教案篇十二

難點(diǎn):正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系

課前自主學(xué)習(xí)

1.列方程組解應(yīng)用題是把“未知”轉(zhuǎn)化為“已知”的`重要方法,它的關(guān)鍵是把已知量和未知量聯(lián)系起來(lái),找出題目中的()

2.一般來(lái)說(shuō),有幾個(gè)未知量就必須列幾個(gè)方程,所列方程必須滿足:

(1)方程兩邊表示的是()量

(2)同類量的單位要()

(3)方程兩邊的數(shù)值要相符。

3.列方程組解應(yīng)用題要注意檢驗(yàn)和作答,檢驗(yàn)不僅要求所得的解是否( ),更重要的是要檢驗(yàn)所求得的結(jié)果是否( )

4.一個(gè)籠中裝有雞兔若干只,從上面看共42個(gè)頭,從下面看共有132只腳,則雞有( ),兔有( )

新課探究

看一看

1題中有哪些已知量?哪些未知量?

2題中等量關(guān)系有哪些?

3如何解這個(gè)應(yīng)用題?

本題的等量關(guān)系是(1)()

(2)()

解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg

根據(jù)題意列方程,得

解這個(gè)方程組得

答:每只母牛和每只小牛1天各需用飼料為( )和( ),飼料員李大叔估計(jì)每天母牛需用飼料18—20千克,每只小牛一天需用7到8千克與計(jì)算()出入。(“有”或“沒(méi)有”)

練一練:

小結(jié)

用方程組解應(yīng)用題的一般步驟是什么?

8.3實(shí)際問(wèn)題與二元一次方程組(2)

1、經(jīng)歷用方程組解決實(shí)際問(wèn)題的過(guò)程,體會(huì)方程組是刻畫現(xiàn)實(shí)世界的有效數(shù)學(xué)模型;

2、能夠找出實(shí)際問(wèn)題中的已知數(shù)和未知數(shù),分析它們之間的數(shù)量關(guān)系,列出方程組;

3、學(xué)會(huì)開放性地尋求設(shè)計(jì)方案,培養(yǎng)分析問(wèn)題,解決問(wèn)題的能力

難點(diǎn):正確發(fā)找出問(wèn)題中的兩個(gè)等量關(guān)系

課前自主學(xué)習(xí)

1.甲乙兩人的年收入之比為4:3,支出之比為8:5,一年間兩人各存了5000元(兩人剩余的錢都存入了銀行),則甲乙兩人的年收入分別為()元和()元。

2.在一堆球中,籃球與排球之比為贊助單位又送來(lái)籃球隊(duì)10個(gè)排球10個(gè),這時(shí)籃球與排球的數(shù)量之比為27:40,則原有籃球()個(gè),排球()個(gè)。

消元解二元一次方程組教案篇十三

看一看:課本99頁(yè)探究2。

問(wèn)題:1“甲、乙兩種作物的單位面積產(chǎn)量比是1:1、5”是什么意思?

2、“甲、乙兩種作物的總產(chǎn)量比為3:4”是什么意思?

3、本題中有哪些等量關(guān)系?

提示:若甲種作物單位產(chǎn)量是a,那么乙種作物單位產(chǎn)量是多少?

思考:這塊地還可以怎樣分?

練一練。

一、某農(nóng)場(chǎng)300名職工耕種51公頃土地,計(jì)劃種植水稻、棉花、和蔬菜,已知種植植物每公頃所需的勞動(dòng)力人數(shù)及投入的設(shè)備獎(jiǎng)金如下表:

農(nóng)作物品種每公頃需勞動(dòng)力每公頃需投入獎(jiǎng)金。

水稻4人1萬(wàn)元。

棉花8人1萬(wàn)元。

蔬菜5人2萬(wàn)元。

問(wèn)題:題中有幾個(gè)已知量?題中求什么?分別安排多少公頃種水稻、棉花、和蔬菜?

消元解二元一次方程組教案篇十四

(北師大版新課標(biāo)實(shí)驗(yàn)教材八年級(jí)上冊(cè))。

一、教學(xué)目標(biāo)。

1、知識(shí)與技能。

2、過(guò)程與方法。

運(yùn)用代入消元法解二元一次方程;了解解二元一次方程時(shí)的“消元”思想,初步體會(huì)“化未知為已知”的化歸思想。

3、情感、態(tài)度、價(jià)值觀。

在學(xué)生了解解二元一次方程時(shí)的“消元”思想,從而初步理解化“未知”為“已知”和化復(fù)雜問(wèn)題為簡(jiǎn)單問(wèn)題的化歸思想。感受學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,提高學(xué)習(xí)數(shù)學(xué)的熱情;培養(yǎng)學(xué)生合作交流,自主探究的好習(xí)慣。

二、教學(xué)重、難點(diǎn)。

1、教學(xué)重點(diǎn)。

2、教學(xué)難點(diǎn)。

“消元”的思想;“化未知為已知”的化歸思想。

三、教學(xué)設(shè)計(jì)。

1、復(fù)習(xí),引入新課。

上次課我們學(xué)習(xí)了二元一次方程、二元一次方程組,以及二元一次方程、二元一次方程組的解的定義。下面請(qǐng)同學(xué)們回憶一下它們分別是怎樣定義的?(同學(xué)們說(shuō),說(shuō)不完的教師利用ppt進(jìn)行展示)。

2、新課講解。

(1)來(lái)看我們課本上的例子:

上次課我們?cè)O(shè)老牛馱了x包,小馬馱了y包,并建立如下的方程組。

現(xiàn)在要求老牛和小馬到底各馱幾個(gè)包裹?就需要我們求出該方程組的解對(duì)吧?我們前面已經(jīng)學(xué)習(xí)了怎樣求解一元一次方程,下面請(qǐng)同學(xué)們討論怎樣通過(guò)已學(xué)的知識(shí)解這個(gè)方程組?(學(xué)生討論,教師巡視指導(dǎo))。

通過(guò)同學(xué)們的討論我們已經(jīng)有了解題思想。首先,由方程(1)將x視為已知數(shù)解出y=x-2,由于方程組中相同的字母表示同一未知數(shù),所以可以用x-2代替方程(2)中的y,即將y=x-2代入方程(2)。這樣就可以把方程化為我們所熟悉的一元一次方程,進(jìn)而求解這個(gè)一元一次方程得到y(tǒng)的值,帶回方程組求出x的'值,方程組的解就求出來(lái)了。

好!下面我們一起來(lái)解這個(gè)方程組(學(xué)生說(shuō),教師板書)。

(1)?x?y?1?(2)?x?1?2(y?1)。

解:由(1),得y=x-2(3)。

x+1=2[(x-2)-1]。

解得,x=7。

把x=代入方程(3)得y=5。

x7所以,方程組的解為:

y5。

因此,就求出了老牛馱了7個(gè)包裹,小馬馱了5個(gè)包裹。

來(lái)看我們的解題過(guò)程,首先將其中一個(gè)方程中的一個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),再把得到的代數(shù)式代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程進(jìn)行形求解。這種求解二元一次方程組的方法稱為代入消元法。

解題基本思路:消元,化未知為已知。(邊說(shuō)邊板書)。

(2)下面再來(lái)看一個(gè)例子:

(1)?2x?3y?16..........?..(2)?x?4y?13......

解:由(2),得x=13-4y(4)。

將(3)代入(1),得2(13-4y)+3y=16。

26-8y+3y=16。

-5y=-10。

y=2。

將y=2代入(3),得x=5。

x5所以原方程的解為y2。

3、課堂練習(xí)。

下面請(qǐng)同學(xué)們自己解下列方程組:

(1)?1)1)?x?y?11....(?3x?2y?9....((2)?(2)?x?y?7......?x?2y?3......(2)。

解答(略)。

(讓兩位同學(xué)上黑板做,教師巡視、指導(dǎo)。做完后評(píng)講,給出解題過(guò)程)。

4、小結(jié)復(fù)習(xí)。

這節(jié)課主要學(xué)習(xí)了用代入消元法解二元一次方程組,其本思想是消元,將未知轉(zhuǎn)化為已知。主要步驟為將其中一個(gè)方程中的一個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),再把得到的代數(shù)式代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程進(jìn)行求解。

5、布置作業(yè)。

課本習(xí)題7.2的1、2題。

四、板書設(shè)計(jì)。

五、教學(xué)反思。

進(jìn)行教學(xué)實(shí)踐后在進(jìn)行總結(jié)、反思、改進(jìn)。

消元解二元一次方程組教案篇十五

(學(xué)生活動(dòng))解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)。

(學(xué)生活動(dòng))請(qǐng)同學(xué)們口答下面各題。

(老師提問(wèn))(1)上面兩個(gè)方程中有沒(méi)有常數(shù)項(xiàng)?

(2)等式左邊的各項(xiàng)有沒(méi)有共同因式?

(學(xué)生先答,老師解答)上面兩個(gè)方程中都沒(méi)有常數(shù)項(xiàng);左邊都可以因式分解。

因此,上面兩個(gè)方程都可以寫成:

(1)x(2x+1)=0(2)3x(x+2)=0。

(2)3x=0或x+2=0,所以x1=0,x2=-2(以上解法是如何實(shí)現(xiàn)降次的?)。

因此,我們可以發(fā)現(xiàn),上述兩個(gè)方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種解法叫做因式分解法。

例1解方程:

思考:使用因式分解法解一元二次方程的條件是什么?

解:略(方程一邊為0,另一邊可分解為兩個(gè)一次因式乘積)。

練習(xí):下面一元二次方程解法中,正確的是()。

c.(x+2)2+4x=0,∴x1=2,x2=-2。

d.x2=x,兩邊同除以x,得x=1。

教材第14頁(yè)練習(xí)1,2。

本節(jié)課要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應(yīng)用。

教材第17頁(yè)習(xí)題6,8,10,11。

消元解二元一次方程組教案篇十六

本課內(nèi)容是在學(xué)生掌握了二元一次方程組有關(guān)概念之后的學(xué)習(xí)內(nèi)容,用代入消元法解二元一次方程組是學(xué)生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現(xiàn)了“化未知為已知”的重要思想,它是學(xué)習(xí)本章的重點(diǎn)和難點(diǎn)。學(xué)完以后可以幫助我們解決一些實(shí)際的問(wèn)題,也是為了今后學(xué)習(xí)函數(shù)、線性方程組及高次方程組奠定了基礎(chǔ)。

2、理解代入消元法的基本思想;了解化“未知為已知”的轉(zhuǎn)化過(guò)程,體會(huì)化歸思想。

2、難點(diǎn):在“消元”的過(guò)程中能夠判斷消去哪個(gè)未知數(shù),使得解方程組的運(yùn)算轉(zhuǎn)為較簡(jiǎn)便的過(guò)程。

(1)復(fù)習(xí)引入。

設(shè)計(jì)意圖:讓學(xué)生復(fù)習(xí)鞏固二元一次方程組和二元一次方程組解的概念,追問(wèn)其他一個(gè)拋磚引玉的效果,激起學(xué)生的學(xué)習(xí)興趣,引出課題。

(2)探究新知。

此過(guò)程通過(guò)播放洋蔥視頻中的代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點(diǎn)擊暫停,先讓學(xué)生考慮想清楚兩個(gè)問(wèn)題。

一個(gè)問(wèn)題是為什么能用一元一次方程解決的實(shí)際問(wèn)題我們要用二元一次方程組來(lái)解決?第二個(gè)問(wèn)題觀察二元一次方程組和一元一次方程組之間有何異同?學(xué)生想清楚這兩個(gè)問(wèn)題后,滲透消元的思想,然后繼續(xù)播放視頻讓學(xué)生知道二元一次方程組完整的解題過(guò)程,并在每一步做出相應(yīng)的`解釋,怎么變化而來(lái)。

播放視頻完后先讓學(xué)生自主總結(jié)歸納解二元一次方程組的基本步驟,教師引導(dǎo)總結(jié)。接著完成配套的3個(gè)習(xí)題,強(qiáng)化訓(xùn)練。

(3)例題講解。

讓學(xué)生嘗試解答。

設(shè)計(jì)意圖:讓學(xué)生通過(guò)例1和例2的對(duì)比,引出如何選擇變化有利于計(jì)算的問(wèn)題。

預(yù)想大部分學(xué)生例2會(huì)存在這樣的問(wèn)題到底選擇哪個(gè)方程變形,當(dāng)學(xué)生做出例1,猶豫例2時(shí),提出這樣兩個(gè)問(wèn)題:

(1)在解二元一次方程組的步驟中變形的過(guò)程我們應(yīng)當(dāng)如何變形?把一個(gè)方程變形為用含x的式子表示y(或含y的式子表示x)。

(2)選擇哪個(gè)方程變形比較簡(jiǎn)便呢?

再一次激起學(xué)生的學(xué)習(xí)興趣,接著播放洋蔥視頻繼續(xù)代入消元法片段視頻,讓學(xué)生清楚的知道在不同的二元一次方程組中在變形的過(guò)程選擇那一個(gè)方程,選擇那一個(gè)未知數(shù)變形能簡(jiǎn)便的進(jìn)行運(yùn)算。

1、這節(jié)課你學(xué)到了哪些知識(shí)和方法?

2、你還有什么問(wèn)題或想法需要和大家交流分享?

xxx。

通過(guò)洋蔥視頻輔助教學(xué),使得學(xué)生容易體會(huì)到“消元”思想的滲透,學(xué)生能夠?qū)W會(huì)規(guī)范解題。通過(guò)視頻的講解能夠準(zhǔn)確的選擇要變形的方程,如果是傳統(tǒng)的教學(xué)方式可能會(huì)出現(xiàn)很多學(xué)生不理解的地方,但通過(guò)洋蔥數(shù)學(xué)短小精辟的視頻講解一下子讓學(xué)生理解透!

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔
你可能感興趣的文章
a.付費(fèi)復(fù)制
付費(fèi)獲得該文章復(fù)制權(quán)限
特價(jià):5.99元 10元
微信掃碼支付
已付款請(qǐng)點(diǎn)這里
b.包月復(fù)制
付費(fèi)后30天內(nèi)不限量復(fù)制
特價(jià):9.99元 10元
微信掃碼支付
已付款請(qǐng)點(diǎn)這里 聯(lián)系客服