每個(gè)人都曾試圖在平淡的學(xué)習(xí)、工作和生活中寫一篇文章。寫作是培養(yǎng)人的觀察、聯(lián)想、想象、思維和記憶的重要手段。范文怎么寫才能發(fā)揮它最大的作用呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
數(shù)學(xué)時(shí)的方法和技巧篇一
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來的式子,使它簡(jiǎn)化,使問題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程根的判別,,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以討論二次方程根的符號(hào),解對(duì)稱方程組,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
數(shù)學(xué)時(shí)的方法和技巧篇二
>中考數(shù)學(xué)做題技巧一、熟悉習(xí)題中所涉及的內(nèi)容,包括定義、公式、定理和規(guī)則。
解題、做練習(xí)只是學(xué)習(xí)過程中的一個(gè)環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題是為閱讀服務(wù)的,是檢查你是否讀懂了教科書,是否深刻理解了其中的概念、定理、公式和規(guī)則,能否利用這些概念、定理、公式和規(guī)則解決實(shí)際問題。解題時(shí),我們的概念越清晰,對(duì)公式、定理和規(guī)則越熟悉,解題速度就越快。
因此,我們?cè)诮忸}之前,應(yīng)通過閱讀教科書和做簡(jiǎn)單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。
二、熟悉習(xí)題中所涉及到的以前學(xué)過的知識(shí),以及與其他學(xué)科相關(guān)的知識(shí)。
有時(shí)候,我們遇到一道不會(huì)做的習(xí)題,不是我們沒有學(xué)會(huì)現(xiàn)在所要學(xué)會(huì)的內(nèi)容,而是要用到過去已經(jīng)學(xué)過的一個(gè)公式,而我們卻記得不很清楚了;或是需用到一個(gè)特殊的定理,而我們卻從未學(xué)過,這樣就使解題速度大為降低。
這時(shí),我們應(yīng)先補(bǔ)充一些必須補(bǔ)充的相關(guān)知識(shí),弄清楚與題目相關(guān)的概念、公式或定理,然后再去解題,否則就是浪費(fèi)時(shí)間,當(dāng)然,解題速度就更無從談起了。
三、熟悉基本的解題步驟和解題方法。
解題的過程,是一個(gè)思維的過程。對(duì)一些基本的、常見的問題,前人已經(jīng)總結(jié)出了一些基本的解題思路和常用的解題程序,我們一般只要順著這些解題的思路,遵循這些解題的步驟,往往很容易找到習(xí)題的答案。否則,走了彎路就多花了時(shí)間。
四、認(rèn)真做好歸納總結(jié)。
在解過一定數(shù)量的習(xí)題之后,對(duì)所涉及到的知識(shí)、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對(duì)于類似的習(xí)題一目了然,可以節(jié)約大量的解題時(shí)間。
五、先易后難,逐步增加習(xí)題的難度。
人們認(rèn)識(shí)事物的過程都是從簡(jiǎn)單到復(fù)雜。簡(jiǎn)單的問題解多了,從而使概念清晰了,對(duì)公式、定理以及解題步驟熟悉了,解題時(shí)就會(huì)形成跳躍性思維,解題的速度就會(huì)大大提高。養(yǎng)成了習(xí)慣,遇到一般的難題,同樣可以保持較高的解題速度。有些學(xué)生不太重視這些基本的、簡(jiǎn)單的習(xí)題,認(rèn)為沒有必要花費(fèi)時(shí)間去解這些簡(jiǎn)單的習(xí)題,結(jié)果是概念不清,公式、定理及解題步驟不熟,遇到稍難一些的題,就束手無策,解題速度就更不用說了。
其實(shí),解簡(jiǎn)單容易的習(xí)題,并不一定比解一道復(fù)雜難題的勞動(dòng)強(qiáng)度和效率低。比如,與一個(gè)人扛一大袋大米上五層樓相比,一個(gè)人拎一個(gè)小提包也上到五層樓當(dāng)然要輕松得多。但是,如果扛米的人只上一次,而拎包的人要來回上下50次、甚至100次,那么,拎包人比扛米人的勞動(dòng)強(qiáng)度大。所以在相同時(shí)間內(nèi),解50道、100道簡(jiǎn)單題,可能要比解一道難題的勞動(dòng)強(qiáng)度大。
數(shù)學(xué)時(shí)的方法和技巧篇三
>高一數(shù)學(xué)學(xué)習(xí)方法具體介紹【學(xué)習(xí)方法】
首先,不要忽視課本。把高一高二的所有教學(xué)課本找出來,認(rèn)認(rèn)真真仔仔細(xì)細(xì)地把里面的知識(shí)點(diǎn)定理公理等等都看一遍,包括書上的證明也不要忽視。不是說看一遍就了事的,而是真正的去理解他。因?yàn)樵谀愀咭桓叨械脑驴?,期中考,期末考,?jīng)歷了這么多題海戰(zhàn)術(shù)之后你要做的就是要回歸課本。你會(huì)發(fā)現(xiàn)有些高考題,他是很巧妙的利用了書上一些簡(jiǎn)單的定義進(jìn)行變換和引申得到的。所以當(dāng)老師帶著從頭復(fù)習(xí)的時(shí)候,不要排斥,而是要回憶,消化,理解和掌握這些書本上的基礎(chǔ)知識(shí)。
第二,要嘗試著去掌握一些新的定理和法則。在高一高二的時(shí)候,老師可能會(huì)說這個(gè)公式不是大綱要求的,所以不必掌握。這是完全正確的,因?yàn)楫?dāng)時(shí)所有的知識(shí)都是新的,你在面對(duì)過多新知識(shí)的時(shí)候,很難消化和掌握。但是現(xiàn)在你已經(jīng)掌握了很多知識(shí)的基礎(chǔ)上,在去適當(dāng)?shù)慕Y(jié)合自己的能力去了解一些考綱之外的,就更容易掌握了。比如洛必達(dá)法則,高中雖然不講,但是在答大題的時(shí)候用起來很方便的一個(gè)法則。如果你掌握了,你就會(huì)比別人做的更好更快更準(zhǔn)確。
第三,要注意數(shù)學(xué)思想和方法的總結(jié)。比如說畫圖的思想,轉(zhuǎn)化的思想等等。這個(gè)操作起來還是比較容易的。就是在你每次做完題要注意看解析,看他是怎么分析試題的;老師講課的時(shí)候是怎么講解和歸類的;甚至可以多問一下身邊的同學(xué)是怎么做這道題的,來尋求一題多解,多思路,看有沒有比你的方法更好的方法。良好的方法是成功的一半,掌握了正確的方法不僅省時(shí)更省力。
第四,計(jì)算能力的提高。講真,我是沒有這個(gè)毛病的。但是我身邊的好多同學(xué)有這個(gè)問題,就是明明會(huì)做的題一定會(huì)算錯(cuò)。小題大題一張卷下來能扣出來10分。嘴上說著是粗心,但我認(rèn)為不是。我覺得有兩個(gè)原因,一個(gè)是知識(shí)掌握的不牢固,另一個(gè)是自身計(jì)算能力太差。這兩點(diǎn)都是很致命的。計(jì)算能力的提高,會(huì)讓正確率上升,會(huì)做的題會(huì)一次性做對(duì)。同時(shí),也會(huì)節(jié)省出很多時(shí)間,去做其他的題。所以從一輪復(fù)習(xí)開始就要學(xué)會(huì)提升自己的計(jì)算能力,這樣到最后才不會(huì)后悔
數(shù)學(xué)時(shí)的方法和技巧篇四
“有所不為才能有所為,大膽取舍,才能確保中考數(shù)學(xué)相對(duì)高分。”針對(duì)中考數(shù)學(xué)如何備考,著名數(shù)學(xué)特級(jí)老師說,這幾個(gè)月的備考一定要有選擇。
某外國(guó)語(yǔ)學(xué)校資深中考數(shù)學(xué)老師建議考生在中考數(shù)學(xué)的備考中強(qiáng)化知識(shí)網(wǎng)絡(luò)的梳理,并熟練掌握中考考綱要求的知識(shí)點(diǎn)。
廣州中考研究中心老師表示,距離中考越來越近,一方面需按照學(xué)校的復(fù)習(xí)進(jìn)度正常學(xué)習(xí),另一方面由于每個(gè)人學(xué)習(xí)情況不一樣,自己還需進(jìn)行知識(shí)點(diǎn)和丟分題型的雙重查漏補(bǔ)缺,找準(zhǔn)短板,準(zhǔn)確修復(fù)。
壓軸題堅(jiān)持每天一道,并及時(shí)總結(jié)方法,錯(cuò)題本就發(fā)揮作用了。最后每周練習(xí)一套中考模擬卷,及時(shí)總結(jié)考試問題。我們做題的原則是先搞懂搞透錯(cuò)題,再做新題。如果沒有時(shí)間做新題,多花時(shí)間思考、沉淀錯(cuò)題是更有效的學(xué)習(xí)方法。
中考是一場(chǎng)選拔性的考試,緊張是難免的,只要不過度緊張,適度緊張也是必要的,而且緊張的不是你一個(gè)人,大家都緊張。最后要明白決定中考成敗的不是壓軸題而是簡(jiǎn)單題,千萬不要在難題上不舍得,做到會(huì)做的題不丟分就好,這就需要你平時(shí)做題專注用心。
練兵千日,用在一時(shí),關(guān)于中考應(yīng)考技巧有幾點(diǎn)做法:解題習(xí)慣要端正,由于是電腦閱卷,所以平時(shí)答題時(shí)就養(yǎng)成左對(duì)齊按列寫的答題習(xí)慣;閱題習(xí)慣的養(yǎng)成,中考都會(huì)提前發(fā)卷,考生可利用這段時(shí)間,將試卷瀏覽一遍,大致了解題量、題型,了解試題的難易度,做到心中有數(shù),通覽全卷,把握全局。答題習(xí)慣上,先易后難,合理支配答題時(shí)間。進(jìn)入考場(chǎng)后考生特別緊張,可輕拍幾下額頭,做幾個(gè)深呼吸,緊張的情緒就會(huì)得到緩解。
數(shù)學(xué)時(shí)的方法和技巧篇五
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
通過把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式解決數(shù)學(xué)問題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
在解題時(shí),我們常常會(huì)采用這樣的方法,通過對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問題的解決。
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋€(gè)部分或改造原來的式子,使它簡(jiǎn)化,使問題易于解決。
在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
一元二次方程ax2bxc=0(a、b、c屬于r,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(?。┯?不大(?。┯?;都是/不都是;至少有一個(gè)/一個(gè)也沒有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡(jiǎn)單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來,有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。
數(shù)學(xué)時(shí)的方法和技巧篇六
1.把復(fù)習(xí)課當(dāng)“新課”。
這么做,是促使你在上復(fù)習(xí)課的時(shí)候也能夠像上新課一樣積極思考,并且大膽地把想法和思路說出來。尤其是針對(duì)自己薄弱的學(xué)科,更應(yīng)如此。說錯(cuò)了不要緊,如果說對(duì)了,得到老師的肯定,反而能夠增強(qiáng)信心。
2.從“例題”中淘金。
準(zhǔn)備了一個(gè)筆記本,但并不記錄知識(shí)點(diǎn)、考點(diǎn),而是記錄例題,從例題中著手,掌握好每一種題型的解題方法。復(fù)習(xí)中就緊扣例題,掌握的題目一次過目,碰到難題就多研習(xí)幾遍,直到弄懂為止。
3.把整理筆記當(dāng)復(fù)習(xí)。
復(fù)習(xí)課堂上,老師的板書往往比較零亂,需要整理。而其實(shí),整理筆記的過程也正是一次很好的復(fù)習(xí)過程。怎么整理筆記?提綱挈領(lǐng)這是很多同學(xué)的做法,不過這是中庸之道;而把方法和容易出錯(cuò)之處整理清楚,一目了然,才是上策。
數(shù)學(xué)時(shí)的方法和技巧篇七
馬克思主義哲學(xué)認(rèn)為,世間萬物存在或者運(yùn)動(dòng)都是有規(guī)律可循的,考研數(shù)學(xué)解題如此思維定理,你知多少?。掌握了規(guī)律,認(rèn)識(shí)事物就會(huì)更加地簡(jiǎn)便和透徹。同樣,運(yùn)用到考研上,掌握出題者的規(guī)律就會(huì)了解各種題型,了解各種題型的解題思路,就會(huì)更快捷地獲得高分。那么,在考研數(shù)學(xué)的解題思路上有哪些更快捷的定理呢?我們一起來揭開這層神秘面紗。
1.在題設(shè)條件中給出一個(gè)函數(shù)f(x)二階和二階以上可導(dǎo),把f(x)在指定點(diǎn)展成泰勒公式。
2.在題設(shè)條件或欲證結(jié)論中有定積分表達(dá)式時(shí),則先用積分中值定理對(duì)該積分式處理一下。
3.在題設(shè)條件中函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)=0或f(b)=0或f(a)=f(b)=0,則先用拉格朗日中值定理處理。
4.對(duì)定限或變限積分,若被積函數(shù)或其主要部分為復(fù)合函數(shù),則先做變量替換使之成為簡(jiǎn)單形式f(u)。
1.題設(shè)條件與代數(shù)余子式aij或a*有關(guān),則立即聯(lián)想到用行列式按行(列)展開定理以及aa*=a*a=|a|e 。
2.若涉及到a、b是否可交換,即ab=ba,則立即聯(lián)想到用逆矩陣的定義去分析。
3.若題設(shè)n階方陣a滿足f(a)=0,要證aa+be可逆,則先分解出因子aa+be再說。
4.若要證明一組向量a1,a2,…,as線性無關(guān),先考慮用定義,考研數(shù)學(xué)《考研數(shù)學(xué)解題如此思維定理,你知多少?》。
5.若已知ab=0,則將b的每列作為ax=0的解來處理。
6.若由題設(shè)條件要求確定參數(shù)的取值,聯(lián)想到是否有某行列式為零。
7.若已知a的特征向量ζ0,則先用定義aζ0=λ0ζ0處理。
8.若要證明抽象n階實(shí)對(duì)稱矩陣a為正定矩陣,則用定義處理。
1.如果要求的是若干事件中“至少”有一個(gè)發(fā)生的概率,則馬上聯(lián)想到概率加法公式;當(dāng)事件組相互獨(dú)立時(shí),用對(duì)立事件的概率公式 。
2.若給出的試驗(yàn)可分解成(0-1)的n重獨(dú)立重復(fù)試驗(yàn),則馬上聯(lián)想到bernoulli試驗(yàn),及其概率計(jì)算公式。
3.若某事件是伴隨著一個(gè)完備事件組的發(fā)生而發(fā)生,則馬上聯(lián)想到該事件的發(fā)生概率是用全概率公式計(jì)算。關(guān)鍵:尋找完備事件組。
4.若題設(shè)中給出隨機(jī)變量x ~ n 則馬上聯(lián)想到標(biāo)準(zhǔn)化 ~ n(0,1)來處理有關(guān)問題。
5.求二維隨機(jī)變量(x,y)的邊緣分布密度 的問題,應(yīng)該馬上聯(lián)想到先畫出使聯(lián)合分布密度 的區(qū)域,然后定出x的變化區(qū)間,再在該區(qū)間內(nèi)畫一條//y軸的直線,先與區(qū)域邊界相交的為y的下限,后者為上限,而 的求法類似。
6.欲求二維隨機(jī)變量(x,y)滿足條件y≥g(x)或(y≤g(x))的概率,應(yīng)該馬上聯(lián)想到二重積分 的計(jì)算,其積分域d是由聯(lián)合密度 的平面區(qū)域及滿足y≥g(x)或(y≤g(x))的區(qū)域的公共部分。
8.凡求解各概率分布已知的若干個(gè)獨(dú)立隨機(jī)變量組成的系統(tǒng)滿足某種關(guān)系的概率(或已知概率求隨機(jī)變量個(gè)數(shù))的問題,馬上聯(lián)想到用中心極限定理處理。
9.若 為總體x的一組簡(jiǎn)單隨機(jī)樣本,則凡是涉及到統(tǒng)計(jì)量的分布問題,一般聯(lián)想到用 分布,t分布和f分布的定義進(jìn)行討論。