又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當(dāng)前位置:網(wǎng)站首頁(yè) >> 作文 >> 2023年八年級(jí)數(shù)學(xué)函數(shù)教案人教版(十三篇)

2023年八年級(jí)數(shù)學(xué)函數(shù)教案人教版(十三篇)

格式:DOC 上傳日期:2023-03-16 17:11:02
2023年八年級(jí)數(shù)學(xué)函數(shù)教案人教版(十三篇)
時(shí)間:2023-03-16 17:11:02     小編:zdfb

作為一位無(wú)私奉獻(xiàn)的人民教師,總歸要編寫(xiě)教案,借助教案可以有效提升自己的教學(xué)能力。大家想知道怎么樣才能寫(xiě)一篇比較優(yōu)質(zhì)的教案嗎?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇一

1.使學(xué)生理解并掌握反比例函數(shù)的概念

2.能判斷一個(gè)給定的函數(shù)是否為反比例函數(shù),并會(huì)用待定系數(shù)法求函數(shù)解析式

3.能根據(jù)實(shí)際問(wèn)題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想

1.重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫(xiě)出函數(shù)解析式

2.難點(diǎn):理解反比例函數(shù)的概念

3.難點(diǎn)的突破方法:

(1)在引入反比例函數(shù)的概念時(shí),可適當(dāng)復(fù)習(xí)一下第11章的正比例函數(shù)、一次函數(shù)等相關(guān)知識(shí),這樣以舊帶新,相互對(duì)比,能加深對(duì)反比例函數(shù)概念的理解

(2)注意引導(dǎo)學(xué)生對(duì)反比例函數(shù)概念的理解,看形式,等號(hào)左邊是函數(shù)y,等號(hào)右邊是一個(gè)分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實(shí)數(shù);看函數(shù)y的取值范圍,因?yàn)閗≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時(shí)可對(duì)照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點(diǎn)和不同點(diǎn)。

(3)(k≠0)還可以寫(xiě)成(k≠0)或xy=k(k≠0)的形式

教材第46頁(yè)的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實(shí)際問(wèn)題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過(guò)觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會(huì)函數(shù)的模型思想。

教材第47頁(yè)的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對(duì)反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會(huì)函數(shù)所蘊(yùn)含的“變化與對(duì)應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對(duì)應(yīng)關(guān)系。

補(bǔ)充例1、例2都是常見(jiàn)的題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個(gè)函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問(wèn)題的能力。

1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?

2.體育課上,老師測(cè)試了百米賽跑,那么,時(shí)間與平均速度的關(guān)系是怎樣的?

五、例習(xí)題分析

例1.見(jiàn)教材p47

分析:因?yàn)閥是x的反比例函數(shù),所以先設(shè),再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。

例1.(補(bǔ)充)下列等式中,哪些是反比例函數(shù)

(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫(xiě)成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨(dú)含x,(6)改寫(xiě)后是,分子不是常數(shù),只有(2)、(3)、(5)能寫(xiě)成定義的形式

例2.(補(bǔ)充)當(dāng)m取什么值時(shí),函數(shù)是反比例函數(shù)?

分析:反比例函數(shù)(k≠0)的另一種表達(dá)式是(k≠0),后一種寫(xiě)法中x的次數(shù)是-1,因此m的取值必須滿足兩個(gè)條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯(cuò)誤

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇二

1、掌握一次函數(shù)解析式的特點(diǎn)及意義

2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

3、理解一次函數(shù)圖象特點(diǎn)與解析式的聯(lián)系規(guī)律

1、 一次函數(shù)解析式特點(diǎn)

2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

1、一次函數(shù)與正比例函數(shù)關(guān)系

2、根據(jù)已知信息寫(xiě)出一次函數(shù)的表達(dá)式。

?。岢鰡?wèn)題,創(chuàng)設(shè)情境

問(wèn)題1 小明暑假第一次去北京.汽車(chē)駛上a地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車(chē)的平均車(chē)速是95千米/小時(shí).已知a地直達(dá)北京的高速公路全程為570千米,小明想知道汽車(chē)從a地駛出后,距北京的路程和汽車(chē)在高速公路上行駛的時(shí)間有什么關(guān)系,以便根據(jù)時(shí)間估計(jì)自己和北京的距離.

分析 我們知道汽車(chē)距北京的路程隨著行車(chē)時(shí)間而變化,要想找出這兩個(gè)變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個(gè)變量的變化規(guī)律.為此,我們?cè)O(shè)汽車(chē)在高速公路上行駛時(shí)間為t小時(shí),汽車(chē)距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

s=570-95t.

說(shuō)明 找出問(wèn)題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個(gè)變量,s是t的函數(shù),t是自變量,s是因變量.

問(wèn)題2 小張準(zhǔn)備將平時(shí)的零用錢(qián)節(jié)約一些儲(chǔ)存起來(lái).他已存有50元,從現(xiàn)在起每個(gè)月節(jié)存12元.試寫(xiě)出小張的存款與從現(xiàn)在開(kāi)始的月份之間的函數(shù)關(guān)系式.

分析 我們?cè)O(shè)從現(xiàn)在開(kāi)始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

問(wèn)題3 以上問(wèn)題1和問(wèn)題2表示的這兩個(gè)函數(shù)有什么共同點(diǎn)?

ⅱ.導(dǎo)入新課

上面的兩個(gè)函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱

y是x的正比例函數(shù)。

例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

①y=x-6;②y=2x;③y=;④y=7-x x8

a、①②③b、①③④ c、①②③④ d、②③④

例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

(1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

(2)長(zhǎng)為8(cm)的平行四邊形的周長(zhǎng)l(cm)與寬b(cm);

(3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

(4)汽車(chē)每小時(shí)行40千米,行駛的路程s(千米)和時(shí)間t(小時(shí)).

(5)汽車(chē)以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;

(6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

(7)一棵樹(shù)現(xiàn)在高50厘米,每個(gè)月長(zhǎng)高2厘米,x月后這棵樹(shù)的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過(guò)整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫(xiě)出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

(2)l=2b+16,l是b的一次函數(shù).

(3)y=150-5x,y是x的一次函數(shù).

(4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

(5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

(6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

(7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

例4 已知y與x-3成正比例,當(dāng)x=4時(shí),y=3.

(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式;

(2)y與x之間是什么函數(shù)關(guān)系;

(3)求x=2.5時(shí),y的值.

解 (1)因?yàn)?y與x-3成正比例,所以y=k(x-3).

又因?yàn)閤=4時(shí),y=3,所以3= k(4-3),解得k=3,

所以y=3(x-3)=3x-9.

(2) y是x的一次函數(shù).

(3)當(dāng)x=2.5時(shí),y=3×2.5=7.5.

1. 2

例5 已知a、b兩地相距30千米,b、c兩地相距48千米.某人騎自行車(chē)以每小時(shí)12千米的速度從a地出發(fā),經(jīng)過(guò)b地到達(dá)c地.設(shè)此人騎行時(shí)間為x(時(shí)),離b地距離為y(千米).

(1)當(dāng)此人在a、b兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x取值范圍.

(2)當(dāng)此人在b、c兩地之間時(shí),求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

分析 (1)當(dāng)此人在a、b兩地之間時(shí),離b地距離y為a、b兩地的距離與某人所走的路程的差.

(2)當(dāng)此人在b、c兩地之間時(shí),離b地距離y為某人所走的路程與a、b兩地的距離的差.

解 (1) y=30-12x.(0≤x≤2.5)

(2) y=12x-30.(2.5≤x≤6.5)

例6 某油庫(kù)有一沒(méi)儲(chǔ)油的儲(chǔ)油罐,在開(kāi)始的8分鐘時(shí)間內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫(xiě)出這段時(shí)間內(nèi)油罐的儲(chǔ)油量y(噸)與進(jìn)出油時(shí)間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

分析 因?yàn)樵谥淮蜷_(kāi)進(jìn)油管的8分鐘內(nèi)、后又打開(kāi)進(jìn)油管和出油管的16分鐘和最后的只開(kāi)出油管的三個(gè)階級(jí)中,儲(chǔ)油罐的儲(chǔ)油量與進(jìn)出油時(shí)間的函數(shù)關(guān)系式是不同的,所以此題因分三個(gè)時(shí)間段來(lái)考慮.但在這三個(gè)階段中,兩變量之間均為一次函數(shù)關(guān)系.

解 在第一階段:y=3x(0≤x≤8);

在第二階段:y=16+x(8≤x≤16);

在第三階段:y=-2x+88(24≤x≤44).

ⅲ.隨堂練習(xí)

根據(jù)上表寫(xiě)出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

2、為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過(guò)6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過(guò)6米3時(shí),超過(guò)部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫(xiě)出每月用水量不

超過(guò)6米3和超過(guò)6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

ⅳ.課時(shí)小結(jié)

1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

2、能根據(jù)已知簡(jiǎn)單信息,寫(xiě)出一次函數(shù)的表達(dá)式。

ⅴ.課后作業(yè)

1、已知y-3與x成正比例,且x=2時(shí),y=7

(1)寫(xiě)出y與x之間的函數(shù)關(guān)系.

(2)y與x之間是什么函數(shù)關(guān)系.

(3)計(jì)算y=-4時(shí)x的值.

2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費(fèi)0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計(jì)算5千克重的包裹的郵資.

3.倉(cāng)庫(kù)內(nèi)原有粉筆400盒.如果每個(gè)星期領(lǐng)出36盒,求倉(cāng)庫(kù)內(nèi)余下的粉筆盒數(shù)q與星期數(shù)t之間的函數(shù)關(guān)系.

4.今年植樹(shù)節(jié),同學(xué)們種的樹(shù)苗高約1.80米.據(jù)介紹,這種樹(shù)苗在10年內(nèi)平均每年長(zhǎng)高0.35米.求樹(shù)高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時(shí)這些樹(shù)約有多高.

5.按照我國(guó)稅法規(guī)定:個(gè)人月收入不超過(guò)800元,免交個(gè)人所得稅.超過(guò)800元不超過(guò)1300元部分需繳納5%的個(gè)人所得稅.試寫(xiě)出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇三

調(diào)查中,所要考察對(duì)象的全體稱為總體,而組成總體的每一個(gè)考察對(duì)象稱為個(gè)體。

例如,某班10名女生的考試成績(jī)是總體,每一名女生的考試成績(jī)是個(gè)體。

從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本。

例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢(qián)數(shù),由于人數(shù)較多(一般涉及幾萬(wàn)人),我們從中抽取500名學(xué)生進(jìn)行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢(qián)數(shù),就是總體的一個(gè)樣本。

將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。

例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。

解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。

又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。

解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。

所以這組數(shù)據(jù)的眾數(shù)是2和3。

【規(guī)律方法小結(jié)】

(1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量。

(2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都有關(guān),是最為重要的量。

(3)中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響,當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),一般用它來(lái)描述集中趨勢(shì)。

(4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)影響,有時(shí)是我們最為關(guān)心的統(tǒng)計(jì)數(shù)據(jù)。

探究交流

1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個(gè),這句話對(duì)嗎?為什么?

解析:不對(duì),一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個(gè),當(dāng)這組數(shù)據(jù)有偶數(shù)個(gè)時(shí),中位數(shù)由中間兩個(gè)數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。

總結(jié):

(1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個(gè),也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。

(2)求中位數(shù)時(shí),先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個(gè),則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個(gè),則最中間的兩個(gè)數(shù)據(jù)的平均數(shù)是中位數(shù)。

(3)中位數(shù)的單位與數(shù)據(jù)的單位相同。

(4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當(dāng)一組數(shù)據(jù)中的個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),可用中位數(shù)來(lái)描述這組數(shù)據(jù)的集中趨勢(shì)。

課堂檢測(cè)

基本概念題

1、填空題。

(1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;

(2)在某班的40名學(xué)生中,14歲的有5人,15歲的有30人,16歲的有4人,17歲的有1人,則這個(gè)班學(xué)生的平均年齡約是_________;

(3)某一學(xué)生5門(mén)學(xué)科考試成績(jī)的平均分為86分,已知其中兩門(mén)學(xué)科的總分為193分,則另外3門(mén)學(xué)科的分為_(kāi)_______;

(4)為了考察某公園一年中每天進(jìn)園的人數(shù),在其中的30天里,對(duì)進(jìn)園的人數(shù)進(jìn)行了統(tǒng)計(jì),這個(gè)問(wèn)題中的總體是________,樣本是________,個(gè)體是________。

基礎(chǔ)知識(shí)應(yīng)用題

2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時(shí)段從總站乘車(chē)出行的人數(shù),隨機(jī)抽查了10個(gè)班次的乘車(chē)人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。

(1)計(jì)算這10個(gè)班次乘車(chē)人數(shù)的平均數(shù);

(2)如果在高峰時(shí)段從總站共發(fā)車(chē)60個(gè)班次,根據(jù)前面的計(jì)算結(jié)果,估計(jì)在高峰時(shí)段從總站乘該路車(chē)出行的乘客共有多少。

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇四

1.從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā)、討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)、函數(shù)概念的理解.

2.經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.

1、經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點(diǎn).

2、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識(shí).

1、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,體會(huì)數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.

2、通過(guò)分組討論,培養(yǎng)學(xué)生合作交流意識(shí)和探索精神.

理解和領(lǐng)會(huì)反比例函數(shù)的概念.

領(lǐng)悟反比例的概念.

問(wèn)題:下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?

(1)京滬線鐵路全程為1463km,乘坐某次列車(chē)所用時(shí)間t(單位:h)隨該列車(chē)平均速度v(單位:km/h)的變化而變化;

(2)某住宅小區(qū)要種植一個(gè)面積為1000m2的矩形草坪,草坪的長(zhǎng)為y隨寬x的變化;

(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積s(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

師生行為:

先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問(wèn)答或交流.學(xué)生用自己的語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.

教師組織學(xué)生討論,提問(wèn)學(xué)生,師生互動(dòng).

在此活動(dòng)中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:

①能否積極主動(dòng)地合作交流.

②能否用語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系.

③能否了解所討論的函數(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.

分析及解答:(1)

;(2)

;(3)

其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

上面的函數(shù)關(guān)系式,都具有

的形式,其中k是常數(shù).

下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用這樣的函數(shù)式表示?

(1)一個(gè)游泳池的容積為20xxm3,注滿游泳池所用的時(shí)間隨注水速度u的變化而變化;

(2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積s的變化而變化;

(3)一個(gè)物體重100牛頓,物體對(duì)地面的壓力p隨物體與地面的接觸面積s的變化而變化.

師生行為

學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.

教師操作課件,提出問(wèn)題,關(guān)注學(xué)生思考的過(guò)程,在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:

(1)能否從現(xiàn)實(shí)情境中抽象出兩個(gè)變量的函數(shù)關(guān)系;

(2)能否積極主動(dòng)地參與小組活動(dòng);

(3)能否比較深刻地領(lǐng)會(huì)函數(shù)、反比例函數(shù)的概念.

分析及解答:(1)

;(2)

;(3)

概念:如果兩個(gè)變量x,y之間的關(guān)系可以表示成

的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

做一做:

一個(gè)矩形的面積為20cm2, 相鄰的兩條邊長(zhǎng)為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

師生行為:

學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問(wèn)題,關(guān)注學(xué)生思考.此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;

②學(xué)生能否順利抽象反比例函數(shù)的模型;

③學(xué)生能否積極主動(dòng)地合作、交流;

問(wèn)題1:下列哪個(gè)等式中的y是x的反比例函數(shù)?

問(wèn)題2:已知y是x的反比例函數(shù),當(dāng)x=2時(shí),y=6

(1)寫(xiě)出y與x的函數(shù)關(guān)系式:

(2)求當(dāng)x=4時(shí),y的值.

師生行為:

學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時(shí)引導(dǎo).在此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

①學(xué)生能否領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念;

②學(xué)生能否積極主動(dòng)地參與小組活動(dòng).

分析及解答:

1、只有xy=123是反比例函數(shù).

2、分析:因?yàn)閥是x的反比例函數(shù),所以

,再把x=2和y=6代入上式就可求出常數(shù)k的值.

解:(1)設(shè)

,因?yàn)閤=2時(shí),y=6,所以有

解得k=12

因此

(2)把x=4代入

,得

1、已知y是x的反比例函數(shù),并且當(dāng)x=3時(shí),y=8.

(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式.

(2)求y=2時(shí)x的值.

2、y是x的反比例函數(shù),下表給出了x與y的一些值:

(1)寫(xiě)出這個(gè)反比例函數(shù)的表達(dá)式;

(2)根據(jù)函數(shù)表達(dá)式完成上表.

學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.

反比例函數(shù)概念形成的過(guò)程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識(shí),注意挖掘問(wèn)題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過(guò)程中,從感性認(rèn)識(shí)到理發(fā)認(rèn)識(shí)一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對(duì)象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過(guò)舉例、說(shuō)理、討論等活動(dòng),感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象.

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇五

一、創(chuàng)設(shè)情境

1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫(huà)出一次函數(shù)的圖象?

(一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,畫(huà)一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫(huà)出函數(shù)的圖象).

2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)哪一點(diǎn)的直線?

(正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線).

3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?

4.在平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象.我們畫(huà)一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過(guò)觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?

二、探究歸納

1.在畫(huà)函數(shù)的圖象時(shí),通過(guò)列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).

2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫(huà)出這條直線.

分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.

解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).

過(guò)點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.

三、實(shí)踐應(yīng)用

例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.

分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.

解因?yàn)橹本€y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本€與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.

例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.

分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇六

1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.

2.使學(xué)生會(huì)用描點(diǎn)法畫(huà)出簡(jiǎn)單函數(shù)的圖象.

重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義.

2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力.

難點(diǎn):在畫(huà)圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問(wèn)題.

1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)

2.結(jié)合函數(shù)y=x的圖象,說(shuō)明什么是函數(shù)的圖象?

3.說(shuō)出下列各點(diǎn)所在象限或坐標(biāo)軸:

1.畫(huà)函數(shù)圖象的方法是描點(diǎn)法.其步驟:

(1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫(huà)函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如m(3,9)就可以了.

一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來(lái).

(2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn).

(3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線.

一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線).

2.講解畫(huà)函數(shù)圖象的三個(gè)步驟和例.畫(huà)出函數(shù)y=x+0.5的圖象.

本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫(huà)函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫(huà)圖.

①選用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)

②補(bǔ)充題:畫(huà)出函數(shù)y=5x-2的圖象.

選用課本習(xí)題.

1.注意滲透數(shù)形結(jié)合思想.通過(guò)研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來(lái),更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征.

2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫(huà)圖的積極性.

3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力.

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇七

函數(shù)的概念 及確定自變量的取值范圍。

認(rèn)識(shí)函數(shù),領(lǐng)會(huì)函數(shù)的意義。

請(qǐng)你舉出生活中含有兩個(gè)變量的變化過(guò)程,說(shuō)明其中的常量和變量。

請(qǐng)看書(shū)72——74頁(yè)內(nèi)容,完成下列問(wèn)題:

1、 思考書(shū)中第72頁(yè)的問(wèn)題,歸納出變量之間的關(guān)系。

2、 完成書(shū)上第73頁(yè)的思考,體會(huì)圖形中體現(xiàn)的變量和變量之間的關(guān)系。

3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

一般的,在一個(gè)變化過(guò)程中,如果有______變量x和y,并且對(duì)于x的_______,y都有_________與其對(duì)應(yīng),那么我們就說(shuō)x是__________,y是x的________。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

(1)函數(shù)的定義:

(2)必須是一個(gè)變化過(guò)程;

(3)兩個(gè)變量;其中一個(gè)變量每取一個(gè)值 ,另一個(gè)變量有且有唯一值對(duì)它對(duì)應(yīng)。

例1:一輛汽車(chē)的油箱中現(xiàn)有汽油50l,如果不再加油,那么油箱中的油量y(單位:l)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1l/千米。

(1)寫(xiě)出表示y與x的函數(shù)關(guān)系式.

(2)指出自變量x的取值范圍.

(3) 汽車(chē)行駛200千米時(shí),油箱中還有多少汽油?

(1)長(zhǎng)方形的寬一定時(shí),其長(zhǎng)與面積;

(2)等腰三角形的底邊長(zhǎng)與面積;

(3)某人的年齡與身高;

(1)一個(gè)長(zhǎng)方體盒子高3cm,底面是正方形,這個(gè)長(zhǎng)方體的體積為y(cm3),底面邊長(zhǎng)為x(cm),寫(xiě)出表示y與x的函數(shù)關(guān)系的式子.

(2)汽車(chē)加油時(shí),加油槍的流量為10l/min.

①如果加油前,油箱里還有5 l油,寫(xiě)出在加油過(guò)程中,油箱中的油量y(l)與加油時(shí)間x(min)之間的函數(shù)關(guān)系;

②如果加油時(shí),油箱是空的,寫(xiě)出在加油過(guò)程中,油箱中的油量y(l)與加油時(shí)間x(min) 之間的函數(shù)關(guān)系.

(3)某種活期儲(chǔ)蓄的月利率為0.16%,存入10000元本金,按國(guó)家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲(chǔ)蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

(4)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是s,求s與n之間的關(guān)系式.

八年級(jí)變量與函數(shù)(2)數(shù)學(xué)教案的全部?jī)?nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個(gè)問(wèn)題,每一個(gè)環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對(duì)性的設(shè)置,希望大家喜歡!

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇八

1、函數(shù)的概念:一般地,在某個(gè)變化過(guò)程中,有兩個(gè) 變量x和 y,如果給定一個(gè)x值,

相應(yīng)地就確定了一個(gè)y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。

2、一次函數(shù)的概念:若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當(dāng)b=0 時(shí),稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).

3、正比例函數(shù)y=kx的性質(zhì)

(1)、正比例函數(shù)y=kx的圖象都經(jīng)過(guò)

原點(diǎn)(0,0),(1,k)兩點(diǎn)的一條直線;

(2)、當(dāng)k0時(shí),圖象都經(jīng)過(guò)一、三象限;

當(dāng)k0時(shí),圖象都經(jīng)過(guò)二、四象限

(3)、當(dāng)k0時(shí),y隨x的增大而增大;

當(dāng)k0時(shí),y隨x的增大而減小。

4、一次函數(shù)y=kx+b的性質(zhì)

(1)、經(jīng)過(guò)特殊點(diǎn):與x軸的交點(diǎn)坐標(biāo)是 ,

與y軸的交點(diǎn)坐標(biāo)是 .

(2)、當(dāng)k0時(shí),y隨x的增大而增大

當(dāng)k0時(shí),y隨x的增大而減小

(3)、k值相同,圖象是互相平行

(4)、b值相同,圖象相交于同一點(diǎn)(0,b)

(5)、影響圖象的兩個(gè)因素是k和b

①k的正負(fù)決定直線的方向

②b的正負(fù)決定y軸交點(diǎn)在原點(diǎn)上方或下方

5.五種類(lèi)型一次函數(shù)解析式的確定

確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。

(1)、根據(jù)直線的解析式和圖像上一個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式

例1、若函數(shù)y=3x+b經(jīng)過(guò)點(diǎn)(2,-6),求函數(shù)的解析式。

解:把點(diǎn)(2,-6)代入y=3x+b,得

-6=32+b 解得:b=-12

函數(shù)的解析式為:y=3x-12

(2)、根據(jù)直線經(jīng)過(guò)兩個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式

例2、直線y=kx+b的圖像經(jīng)過(guò)a(3,4)和點(diǎn)b(2,7),

求函數(shù)的表達(dá)式。

解:把點(diǎn)a(3,4)、點(diǎn)b(2,7)代入y=kx+b,得

,解得:

函數(shù)的解析式為:y=-3x+13

(3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式

例3、如圖1表示一輛汽車(chē)油箱里剩余油量y(升)與行駛時(shí)間x

(小時(shí))之間的關(guān)系.求油箱里所剩油y(升)與行駛時(shí)間x

(小時(shí))之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。

(4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式

例4、如圖2,將直線 向上平移1個(gè)單位,得到一個(gè)一次

函數(shù)的圖像,那么這個(gè)一次函數(shù)的解析式是 .

解:直線 經(jīng)過(guò)點(diǎn)(0,0)、點(diǎn)(2,4),直線 向上平移1個(gè)單位

后,這兩點(diǎn)變?yōu)?0,1)、(2,5),設(shè)這個(gè)一次函數(shù)的解析式為 y=kx+b,

得 ,解得: ,函數(shù)的解析式為:y=2x+1

(5)、根據(jù)直線的對(duì)稱性,確定函數(shù)的解析式

例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對(duì)稱,求k、b的值。

例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對(duì)稱,求k、b的值。

例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點(diǎn)對(duì)稱,求k、b的值。

1、已知梯形上底的長(zhǎng)為x,下底的長(zhǎng)是10,高是 6,梯形的面積y隨上底x的變化而變化。

(1)梯形的面積y與上底的長(zhǎng)x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?

(2)若y是x的函數(shù),試寫(xiě)出y與x之間的函數(shù)關(guān)系式 。

1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,

一次函數(shù)有___ __;正比例函數(shù)有____________(填序號(hào)).

2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )

a.k1 b.k-1 c.k1 d.k為任意實(shí)數(shù).

3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.

1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.

2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )

a.m0 b.m0 c.m0 d.m0

3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過(guò)的象限是____,它與x軸的交 點(diǎn)坐標(biāo)是____,與y軸的交點(diǎn)坐標(biāo)是____.

4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過(guò)原點(diǎn),則k=_____;

若y隨x的增大而增大,則k__________.

5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )

1、 正比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)a(-3,5),寫(xiě)出這正比例函數(shù)的解析式.

2、已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,1)和(-1,-3).求此一次函數(shù)的解析式 .

3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。

4、已知一次函數(shù)y=kx+b,在x=0時(shí)的.值為4,在x=-1時(shí)的值為-2,求這個(gè)一次函數(shù)的解析式。

5、已知y-1與x成正比例,且 x=-2時(shí),y=-4.

(1)求出y與x之間的函數(shù)關(guān)系式;

(2)當(dāng)x=3時(shí),求y的值.

1、已知 是整數(shù),且一次函數(shù) 的圖象不過(guò)第二象限,則 為 .

2、若直線 和直線 的交點(diǎn)坐標(biāo)為 ,則 .

3、一次函數(shù) 和 的圖象與 軸分別相交于 點(diǎn)和 點(diǎn), 、 關(guān)于 軸對(duì)稱,則 .

4、已知 , 與 成正比例, 與 成反比例,當(dāng) 時(shí) , 時(shí), ,則當(dāng) 時(shí), .

5、函數(shù) ,如果 ,那么 的取值范圍是 .

6、一個(gè)長(zhǎng) ,寬 的矩形場(chǎng)地要擴(kuò)建成一個(gè)正方形場(chǎng)地,設(shè)長(zhǎng)增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).

7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當(dāng) 取 時(shí), 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .

8、已知一次函數(shù) 和 的圖象交點(diǎn)的橫坐標(biāo)為 ,則 ,一次函數(shù) 的圖象與兩坐標(biāo)軸所圍成的三角形的面積為 ,則 .

9、已知一次函數(shù) 的圖象經(jīng)過(guò)點(diǎn) ,且它與 軸的交點(diǎn)和直線 與 軸的交點(diǎn)關(guān)于 軸對(duì)稱,那么這個(gè)一次函數(shù)的解析式為 .

10、一次函數(shù) 的圖象過(guò)點(diǎn) 和 兩點(diǎn),且 ,則 , 的取值范圍是 .

11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當(dāng) 時(shí), 是正比例函數(shù).

12、 為 時(shí),直線 與直線 的交點(diǎn)在 軸上.

13、已知直線 與直線 的交點(diǎn)在第三象限內(nèi),則 的取值范圍是 .

14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的圖象的是( )

15、若直線 與 的交點(diǎn)在 軸上,那么 等于( )

a.4 b.-4 c. d.

16、直線 經(jīng)過(guò)一、二、四象限,則直線 的圖象只能是圖4中的( )

17、直線 如圖5,則下列條件正確的是( )

18、直線 經(jīng)過(guò)點(diǎn) , ,則必有( )

a.

19、如果 , ,則直線 不通過(guò)( )

a.第一象限 b.第二象限 c.第三象限 d.第四象限

20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是

a. b. c. d.都不對(duì)

21、如圖6,兩直線 和 在同一坐標(biāo)系內(nèi)圖象的位置可能是( )

圖6

22、已知一次函數(shù) 與 的圖像都經(jīng)過(guò) ,且與 軸分別交于點(diǎn)b, ,則 的面積為( )

a.4 b.5 c.6 d.7

23、已知直線 與 軸的交點(diǎn)在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個(gè)數(shù)是( )

a.1個(gè) b.2個(gè) c.3個(gè) d.4個(gè)

24、已知 ,那么 的圖象一定不經(jīng)過(guò)( )

a.第一象限 b.第二象限 c.第三象限 d.第四象限

25、如圖7,a、b兩站相距42千米,甲騎自行車(chē)勻速行駛,由a站經(jīng)p處去b站,上午8時(shí),甲位于距a站18千米處的p處,若再向前行駛15分鐘,使可到達(dá)距a站22千米處.設(shè)甲從p處出發(fā) 小時(shí),距a站 千米,則 與 之間的關(guān)系可用圖象表示為( )

26、如圖8,在直角坐標(biāo)系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點(diǎn),直線 與 軸交于點(diǎn)d,四邊形obcd(o是坐標(biāo)原點(diǎn))的面積是10,若點(diǎn)a的橫坐標(biāo)是 ,求這個(gè)一次函數(shù)解析式.

27、一次函數(shù) ,當(dāng) 時(shí),函數(shù)圖象有何特征?請(qǐng)通過(guò)不同的取值得出結(jié)論?

28、某油庫(kù)有一大型儲(chǔ)油罐,在開(kāi)始的8分鐘內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的油進(jìn)至24噸(原油罐沒(méi)儲(chǔ)油)后將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.

(1)試分別寫(xiě)出這一段時(shí)間內(nèi)油的儲(chǔ)油量q(噸)與進(jìn)出油的時(shí)間t(分)的函數(shù)關(guān)系式.

(2)在同一坐標(biāo)系中,畫(huà)出這三個(gè)函數(shù)的圖象.

29、某市電力公司為了鼓勵(lì)居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月不超過(guò)100度時(shí),按每度0.57元計(jì)費(fèi);每月用電超過(guò)100度時(shí),其中的100度按原標(biāo)準(zhǔn)收費(fèi);超過(guò)部分按每度0.50元計(jì)費(fèi).

(1)設(shè)用電 度時(shí),應(yīng)交電費(fèi) 元,當(dāng) 100和 100時(shí),分別寫(xiě)出 關(guān)于 的函數(shù)關(guān)系式.

(2)小王家第一季度交納電費(fèi)情況如下:

月份 一月份 二月份 三月份 合計(jì)

交費(fèi)金額 76元 63元 45元6角 184元6角

問(wèn)小王家第一季度共用電多少度?

30、某地上年度電價(jià)為0.8元,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當(dāng) =0.65時(shí), =0.8.

(1)求 與 之間的函數(shù)關(guān)系式;

(2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門(mén)的收益將比上年度增加20%?[收益=用電量(實(shí)際電價(jià)-成本價(jià))]

31、汽車(chē)從a站經(jīng)b站后勻速開(kāi)往c站,已知離開(kāi)b站9分時(shí),汽車(chē)離a站10千米,又行駛一刻鐘,離a站20千米.(1)寫(xiě)出汽車(chē)與b站距離 與b站開(kāi)出時(shí)間 的關(guān)系;(2)如果汽車(chē)再行駛30分,離a站多少千米?

32、甲乙兩個(gè)倉(cāng)庫(kù)要向a、b兩地運(yùn)送水泥,已知甲庫(kù)可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,a地需70噸水泥,b地需110噸水泥,兩庫(kù)到a,b兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄元/(噸、千米)表示每噸水泥運(yùn)送1千米所需人民幣)

路程/千米 運(yùn)費(fèi)(元/噸、千米)

甲庫(kù) 乙?guī)?甲庫(kù) 乙?guī)?/p>

a地 20 15 12 12

b地 25 20 10 8

(1)設(shè)甲庫(kù)運(yùn)往a地水泥 噸,求總運(yùn)費(fèi) (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫(huà)出它的圖象(草圖).

(2)當(dāng)甲、乙兩庫(kù)各運(yùn)往a、b兩地多少噸水泥時(shí),總運(yùn)費(fèi)最省?最省的總運(yùn)費(fèi)是多少?

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇九

1.知識(shí)與技能

能應(yīng)用所學(xué)的函數(shù)知識(shí)解決現(xiàn)實(shí)生活中的問(wèn)題,會(huì)建構(gòu)函數(shù)“模型”.

2.過(guò)程與方法

經(jīng)歷探索一次函數(shù)的應(yīng)用問(wèn)題,發(fā)展抽象思維.

3.情感、態(tài)度與價(jià)值觀

培養(yǎng)變量與對(duì)應(yīng)的,形成良好的函數(shù)觀點(diǎn),體會(huì)一次函數(shù)的應(yīng)用價(jià)值.

1.重點(diǎn):一次函數(shù)的應(yīng)用.

2.難點(diǎn):一次函數(shù)的應(yīng)用.

3.關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維.

采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用.

例5小芳以米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫(xiě)出這段時(shí)間里她的跑步速度y(單位:米/分)隨跑步時(shí)間x(單位:分)變化的函數(shù)關(guān)系式,并畫(huà)出函數(shù)圖象.

y=

例6a城有肥料噸,b城有肥料300噸,現(xiàn)要把這些肥料全部運(yùn)往c、d兩鄉(xiāng).從a城往c、d兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸20元和25元;從b城往c、d兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸15元和24元,現(xiàn)c鄉(xiāng)需要肥料240噸,d鄉(xiāng)需要肥料260噸,怎樣調(diào)運(yùn)總運(yùn)費(fèi)最少?

解:設(shè)總運(yùn)費(fèi)為y元,a城往運(yùn)c鄉(xiāng)的肥料量為x噸,則運(yùn)往d鄉(xiāng)的肥料量為(-x)噸.b城運(yùn)往c、d鄉(xiāng)的肥料量分別為(240-x)噸與(60+x)噸.y與x的關(guān)系式為:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).

由圖象可看出:當(dāng)x=0時(shí),y有最小值10040,因此,從a城運(yùn)往c鄉(xiāng)0噸,運(yùn)往d鄉(xiāng)噸;從b城運(yùn)往c鄉(xiāng)240噸,運(yùn)往d鄉(xiāng)60噸,此時(shí)總運(yùn)費(fèi)最少,總運(yùn)費(fèi)最小值為10040元.

拓展:若a城有肥料300噸,b城有肥料噸,其他條件不變,又應(yīng)怎樣調(diào)運(yùn)?

課本p119練習(xí).

由學(xué)生自我本節(jié)課的表現(xiàn).

課本p120習(xí)題14.2第9,10,11題.

14.2.2一次函數(shù)(4)

1、一次函數(shù)的應(yīng)用例:

練習(xí):

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇十

認(rèn)知基礎(chǔ):學(xué)生在七年級(jí)下冊(cè)第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對(duì)變量間互相依存的關(guān)系有了一定的認(rèn)識(shí),但對(duì)于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認(rèn)知方式和思維深度上對(duì)學(xué)生有較高的要求,學(xué)生在理解和運(yùn)用時(shí)會(huì)有一定的難度。

活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在七年級(jí)下冊(cè)《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實(shí)例額,體會(huì)了變量之間相互依賴關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識(shí)圖能力和主動(dòng)參與、合作的意識(shí)和初步的觀察、分析、抽象概括的能力。

知識(shí)與技能目標(biāo):

(1)初步掌握函數(shù)概念,能判斷兩個(gè)變量之間的關(guān)系是否可以看作函數(shù)。

(2)根據(jù)兩個(gè)變量之間的關(guān)系式,給定其中一個(gè)變量的值相應(yīng)的會(huì)求出另一個(gè)變量的值。

(3)會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為函數(shù)問(wèn)題。

過(guò)程與方法目標(biāo):

(1)通過(guò)函數(shù)概念初步形成利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

(2)經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

情感態(tài)度與價(jià)值觀目標(biāo):

(1)經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。

(2)能主動(dòng)從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇十一

知識(shí)目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識(shí)別出函數(shù)關(guān)系中的自變量和函數(shù)

能力目標(biāo):會(huì)用變化的量描述事物

情感目標(biāo):回用運(yùn)動(dòng)的觀點(diǎn)觀察事物,分析事物

重點(diǎn):函數(shù)的概念

難點(diǎn):函數(shù)的概念

教學(xué)媒體:多媒體電腦,計(jì)算器

教學(xué)說(shuō)明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會(huì)確定自變量的取值范圍

教學(xué)設(shè)計(jì):

引入:

信息1:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?

新課:

問(wèn)題:(1)如圖是某日的氣溫變化圖。

① 這張圖告訴我們哪些信息?

② 這張圖是怎樣來(lái)展示這天各時(shí)刻的溫度和刻畫(huà)這鐵的氣溫變化規(guī)律的?

(2)收音機(jī)上的刻度盤(pán)的波長(zhǎng)和頻率分別是用米(m)和赫茲(khz)為單位標(biāo)刻的,下表中是一些對(duì)應(yīng)的數(shù):

① 這表告訴我們哪些信息?

② 這張表是怎樣刻畫(huà)波長(zhǎng)和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來(lái)嗎?

一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有惟一確定的值與其對(duì)應(yīng),那么我們就說(shuō)x是自變量,y是x的函數(shù)。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

(5) 長(zhǎng)方形的寬一定時(shí),其長(zhǎng)與面積;

(6) 等腰三角形的底邊長(zhǎng)與面積;

(7) 某人的年齡與身高;

活動(dòng)1:閱讀教材7頁(yè)觀察1. 后完成教材8頁(yè)探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

思考:自變量是否可以任意取值

例2 一輛汽車(chē)的油箱中現(xiàn)有汽油50l,如果不再加油,那么油箱中的油量y(單位:l)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1l/km。

(1) 寫(xiě)出表示y與x的函數(shù)關(guān)系式.

(2) 指出自變量x的取值范圍.

(3) 汽車(chē)行駛200km時(shí),油箱中還有多少汽油?

解:(1)y=50-0.1x

(2)0500

(3)x=200,y=30

活動(dòng)2:練習(xí)教材9頁(yè)練習(xí)

小結(jié):(1)函數(shù)概念

(2)自變量,函數(shù)值

(3)自變量的取值范圍確定

作業(yè):18頁(yè):2,3,4題

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇十二

1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。

3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。

1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。

2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。

1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。

2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。

掌握函數(shù)概念。

判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。

能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

理解函數(shù)的概念。

能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。

『師』:同學(xué)們,你們看下圖上面那個(gè)像車(chē)輪狀的物體是什么?

『生』:摩天輪。

『師』:你們坐過(guò)嗎?

……

『師』:當(dāng)你坐在摩天輪上時(shí),人的高度隨時(shí)在變化,那么變化是否有規(guī)律呢?

『生』:應(yīng)該有規(guī)律。因?yàn)槿穗S輪一直做圓周運(yùn)動(dòng)。所以人的高度過(guò)一段時(shí)間就會(huì)重復(fù)依次,即轉(zhuǎn)動(dòng)一圈高度就重復(fù)一次。

『師』:分析有道理。摩天輪上一點(diǎn)的高度h與旋轉(zhuǎn)時(shí)間t之間有一定的關(guān)系。請(qǐng)看下圖,反映了旋轉(zhuǎn)時(shí)間t(分)與摩天輪上一點(diǎn)的高度h(米)之間的關(guān)系。

大家從圖上可以看出,每過(guò)6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時(shí)間所對(duì)應(yīng)的高度h。下面根據(jù)圖5-1進(jìn)行填表:

t/分 0 1 2 3 4 5 …… h/米

t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……

『師』:對(duì)于給定的時(shí)間t,相應(yīng)的高度h確定嗎?

『生』:確定。

『師』:在這個(gè)問(wèn)題中,我們研究的對(duì)象有幾個(gè)?分別是什么?

『生』:研究的對(duì)象有兩個(gè),是時(shí)間t和高度h。

『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長(zhǎng)度與所掛物體的質(zhì)量,路程的距離與所用時(shí)間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識(shí)世界。下面我們就去研究一些有關(guān)變量的問(wèn)題。

做一做

(1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

填寫(xiě)下表:

層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個(gè)問(wèn)題中的變量有幾個(gè)?分別師什么?

『生』:變量有兩個(gè),是層數(shù)與圓圈總數(shù)。

(2)在平整的路面上,某型號(hào)汽車(chē)緊急剎車(chē)后仍將滑行s米,一般地有經(jīng)驗(yàn)公式,其中v表示剎車(chē)前汽車(chē)的速度(單位:千米/時(shí))

①計(jì)算當(dāng)fenbie為50,60,100時(shí),相應(yīng)的滑行距離s是多少?

②給定一個(gè)v值,你能求出相應(yīng)的s值嗎?

解:略

議一議

『師』:在上面我們研究了三個(gè)問(wèn)題。下面大家探討一下,在這三個(gè)問(wèn)題中的共同點(diǎn)是什么?不同點(diǎn)又是什么?

『生』:相同點(diǎn)是:這三個(gè)問(wèn)題中都研究了兩個(gè)變量。

不同點(diǎn)是:在第一個(gè)問(wèn)題中,是以圖象的形式表示兩個(gè)變量之間的關(guān)系;第二個(gè)問(wèn)題中是以表格的形式表示兩個(gè)變量間的關(guān)系;第三個(gè)問(wèn)題是以關(guān)系式來(lái)表示兩個(gè)變量間的關(guān)系的。

『師』:通過(guò)對(duì)這三個(gè)問(wèn)題的研究,明確“給定其中某一個(gè)變量的值,相應(yīng)地就確定了另一個(gè)變量的值”這一共性。

函數(shù)的概念

在上面各例中,都有兩個(gè)變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個(gè)變量(因變量)的值。

一般地,在某個(gè)變化過(guò)程中,有兩個(gè)變量x和y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

書(shū)p152頁(yè) 隨堂練習(xí)1、2、3

初步掌握函數(shù)的概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。

在一個(gè)函數(shù)關(guān)系式中,能識(shí)別自變量與因變量,給定自變量的值,相應(yīng)地會(huì)求出函數(shù)的值。

函數(shù)的三種表達(dá)式:

圖象;(2)表格;(3)關(guān)系式。

為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過(guò)10噸時(shí),水價(jià)為每噸1.2元;超過(guò)10噸時(shí),超過(guò)的部分按每噸1.8元收費(fèi),該市某戶居民5月份用水x噸(x>10),應(yīng)交水費(fèi)y元,請(qǐng)用方程的知識(shí)來(lái)求有關(guān)x和y的關(guān)系式,并判斷其中一個(gè)變量是否為另一個(gè)變量的函數(shù)?

(答案:y=1.8x-6或)

習(xí)題6.1

八年級(jí)數(shù)學(xué)函數(shù)教案人教版篇十三

八年級(jí)下數(shù)學(xué)教案-變量與函數(shù)(2)

1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。

2.使學(xué)生理解求自變量的取值范圍的兩個(gè)依據(jù)。

3.使學(xué)生掌握關(guān)于解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會(huì)求其函數(shù)值。

4.通過(guò)求函數(shù)中自變量的取值范圍使學(xué)生進(jìn)一步理解函數(shù)概念。

重點(diǎn):函數(shù)自變量取值的求法。

難點(diǎn):函靈敏處變量取值的確定。

復(fù)習(xí)提問(wèn)

1.函數(shù)的定義是什么?函數(shù)概念包含哪三個(gè)方面的內(nèi)容?

2.什么叫分式?當(dāng)x取什么數(shù)時(shí),分式x+2/2x+3有意義?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的條件是什么?

(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開(kāi)方數(shù)≥0。)

4.舉出一個(gè)函數(shù)的實(shí)例,并指出式中的變量與常量、自變量與函數(shù)。

1.結(jié)合同學(xué)舉出的實(shí)例說(shuō)明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

2.結(jié)合同學(xué)舉出的實(shí)例,說(shuō)明函數(shù)的自變量取值范圍有時(shí)要受到限制這就可以引出自變量取值范圍的意義,并說(shuō)明求自變量的取值范圍的兩個(gè)依據(jù)是:

(1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達(dá)式)有意義。

(2)自變量取值范圍要使實(shí)際問(wèn)題有意義。

3.講解p93中例2。并指出例2四個(gè)小題代表三類(lèi)題型:(1),(2)題給出的是只含有一個(gè)自變量的整式;(3)題給出的是只含有一個(gè)自變量的分式;(4)題給出的是只含有一個(gè)自變量的二次根式。

推廣與聯(lián)想:請(qǐng)同學(xué)按上述三類(lèi)題型自編3個(gè)題,并寫(xiě)出解答,同桌互對(duì)答案,老師評(píng)講。

4.講解p93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點(diǎn):

(1)例3中的4個(gè)小題歸納起來(lái)仍是三類(lèi)題型。

(2)求函數(shù)值的問(wèn)題實(shí)際是求代數(shù)式值的問(wèn)題。

求下列函數(shù)當(dāng)x=3時(shí)的函數(shù)值:

(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。

2.求函數(shù)自變量取值范圍的兩個(gè)方法(依據(jù)):

(1)要使函數(shù)的解析式有意義。

①函數(shù)的解析式是整式時(shí),自變量可取全體實(shí)數(shù);

②函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母≠0;

③函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開(kāi)方數(shù)≥0。

(2)對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,應(yīng)使實(shí)際問(wèn)題有意義。

3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

練習(xí):p94中1,2,3。

作業(yè):p95~p96中a組3,4,5,6,7。b組1,2。

1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個(gè)小題,對(duì)每一個(gè)例題均可歸納為三類(lèi)題型。而對(duì)于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類(lèi)題型:整式、分式、二次根式。

2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。

3.注意培養(yǎng)學(xué)生對(duì)于“具體問(wèn)題要具體分析”的良好學(xué)習(xí)方法。比如對(duì)于有實(shí)際意義來(lái)確定,由于實(shí)際問(wèn)題千差萬(wàn)別,所以我們就要具體分析,靈活處置。

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔
你可能感興趣的文章
a.付費(fèi)復(fù)制
付費(fèi)獲得該文章復(fù)制權(quán)限
特價(jià):5.99元 10元
微信掃碼支付
已付款請(qǐng)點(diǎn)這里
b.包月復(fù)制
付費(fèi)后30天內(nèi)不限量復(fù)制
特價(jià):9.99元 10元
微信掃碼支付
已付款請(qǐng)點(diǎn)這里 聯(lián)系客服