又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當(dāng)前位置:網(wǎng)站首頁 >> 作文 >> 最新蘇教版公因數(shù)和最大公因數(shù)教學(xué)反思(大全4篇)

最新蘇教版公因數(shù)和最大公因數(shù)教學(xué)反思(大全4篇)

格式:DOC 上傳日期:2023-04-07 11:40:09
最新蘇教版公因數(shù)和最大公因數(shù)教學(xué)反思(大全4篇)
時間:2023-04-07 11:40:09     小編:zdfb

無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧

蘇教版公因數(shù)和最大公因數(shù)教學(xué)反思篇一

對照《課標(biāo)》的理念,我對《公因數(shù)與最大公因數(shù)》的教學(xué)作了一點嘗試。

《公因數(shù)與最大公因數(shù)》是在《公倍數(shù)和最小公倍數(shù)》之后學(xué)習(xí)的一個內(nèi)容。如果我們對本課內(nèi)容作一分析的話,會發(fā)現(xiàn)這兩部分內(nèi)容無論是在教材的呈現(xiàn)程序還是在思考方法上都有其相似之處。基于這一認(rèn)識,在課的開始我作了如下的設(shè)計:

“今天我們學(xué)習(xí)公因數(shù)與最大公因數(shù)。對于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”

學(xué)生已經(jīng)學(xué)過公倍數(shù)與最小公倍數(shù),這兩部分內(nèi)容有其相似之處,課始放手讓學(xué)生自由猜測,學(xué)生通過對已有認(rèn)知的檢索,必定會催生出自己的一些想法,從課的實施情況來看,也取得了令人滿意的效果。什么是公因數(shù)和最大公因數(shù)?如何找公因數(shù)與最大公因數(shù)?為什么是最大公因數(shù)面不是最小公因數(shù)?這一些問題在學(xué)生的思考與思維的碰撞中得到了較好的生成。無疑這樣的設(shè)計貼近學(xué)生的最近發(fā)展區(qū),為課堂的有效性奠定了基礎(chǔ)。

“對于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”這一問題的包容性較大,不同的學(xué)生面對這一問題都能說出自己不同的猜測,學(xué)生的差異與個性得到了較好的尊重,真正體現(xiàn)了面向全體的思想。不同學(xué)生在思考這一問題時都有了自己的見解,在相互補充與想互啟發(fā)中生成了本課教學(xué)的內(nèi)容,使學(xué)生充分體會了合作的魅力,構(gòu)建了一個和諧的課堂生活。在這一過程中學(xué)生深深地體會到數(shù)學(xué)知識并不是那么高深莫測、可敬而不可親。數(shù)學(xué)并不可怕,它其實滋生于原有的知識,植根于生活經(jīng)驗之中。這樣的教學(xué)無疑有利于培養(yǎng)學(xué)生的自信心,而自信心的培養(yǎng)不就是教育最有意義而又最根本的內(nèi)容嗎?

通過學(xué)生的猜測,我把學(xué)生的提出的問題進行了整理:

(1)什么是公因數(shù)與最大公因數(shù)?

(2)怎樣找公因數(shù)與最大公因數(shù)?

(3)為什么是最大公因數(shù)而不是最小公因數(shù)?

(4)這一部分知識到底有什么作用?

我先讓學(xué)生獨立思考?然后組織交流,最后讓學(xué)生自學(xué)課本

這樣的設(shè)計對學(xué)生來說具有一定的挑戰(zhàn)性,在問題解決的過程中充分發(fā)揮了學(xué)生的主體性。在這一過程中學(xué)生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標(biāo)準(zhǔn)》中倡導(dǎo)給學(xué)生提供探索與交流的時間和空間的應(yīng)有之意吧。

蘇教版公因數(shù)和最大公因數(shù)教學(xué)反思篇二

《兩三位數(shù)除以一位數(shù)》商是兩位數(shù)是在學(xué)生學(xué)習(xí)了商是三位數(shù)和有余數(shù)除法的基礎(chǔ)上進行的,它是學(xué)習(xí)除數(shù)是多位數(shù)除法的基礎(chǔ)。因此要在引導(dǎo)學(xué)生解決具體問題的過程中,切實理解算理,掌握計算方法。

本節(jié)課我有意識的在一開始設(shè)計了搶答環(huán)節(jié),讓學(xué)生判斷大屏幕上幾道題目的商的位數(shù),進而發(fā)現(xiàn)不同,激發(fā)興趣,引入本節(jié)課的學(xué)習(xí)。從效果上看,學(xué)生在判斷的過程中比較感興趣,并能初步感受與舊知的聯(lián)系與不同,達到了預(yù)期的目的。

本節(jié)課我在這方面做的不好。在擺小棒理解算理環(huán)節(jié),我領(lǐng)的比較多,學(xué)生和老師一問一答,比如:“先分什么?再分什么?每份是多少”等,雖然學(xué)生最后也弄明白了該如何分小棒,但學(xué)生的能力沒有得到提高。在于老師的建議下,在重建設(shè)計中,我會注意放手,設(shè)置大問題。比如:“請同學(xué)們看著大屏幕上的小棒,想一想應(yīng)該怎樣分呢?先自己想一想,然后同桌交流一下?!弊寣W(xué)生帶著問題思考,在思考中考慮擺小棒的全過程,而不是想一開始那樣,思路被割裂開了。之后再全班交流,教師也可適當(dāng)引領(lǐng)點撥,但這和我之前的設(shè)計感覺就不一樣了,后者更能體現(xiàn)學(xué)生主體地位。在這方面,我今后還應(yīng)提高意識,不斷實踐。

計算教學(xué),單純的讓學(xué)生計算勢必會使學(xué)生產(chǎn)生厭倦。我聯(lián)系學(xué)生實際和生活實際,設(shè)計出多種多樣的練習(xí)題,比如:計算之后讓學(xué)生思考問題“想一想:三位數(shù)除以一位數(shù),什么時候商是三位數(shù),什么時候商是兩位數(shù)?”或讓學(xué)生“火眼金睛”辨別對錯,或讓學(xué)生在解決實際問題中說一說先算什么再算什么,感受解決實際問題的一般環(huán)節(jié),將思路滲透到日常教學(xué)中,或在最后讓學(xué)生根據(jù)所學(xué)再來一組比賽等,結(jié)合學(xué)生不同的計算階段提出不同的要求和練習(xí)形式,使單調(diào)枯燥的計算練習(xí)變得生動有趣,達到了較好的教學(xué)效果。

我將以本次講課為契機,在今后的教學(xué)中應(yīng)用本次活動學(xué)到的知識,加以實踐,不斷提高自身的教學(xué)水平。

蘇教版公因數(shù)和最大公因數(shù)教學(xué)反思篇三

分析基礎(chǔ)知識:本單元是在學(xué)生已經(jīng)理解和掌握倍數(shù)、因數(shù)的含義,初步學(xué)會找一個數(shù)的倍數(shù)和因數(shù),知道一個數(shù)的倍數(shù)和因數(shù)的特點的基礎(chǔ)上進行教學(xué)的。這部分內(nèi)容既是“數(shù)與代數(shù)”領(lǐng)域基礎(chǔ)知識的重要組成部分,又是進一步學(xué)習(xí)約分和通分以及分?jǐn)?shù)四則計算的基礎(chǔ)。教材分兩段安排教學(xué)內(nèi)容:第一段,認(rèn)識公倍數(shù)、最小公倍數(shù),探索找兩個數(shù)的最小公倍數(shù)的方法;第二段,認(rèn)識公因數(shù)、最大公因數(shù),探索找兩個數(shù)的最大公因數(shù)的方法。此外,在本單元的最后還安排了實踐與綜合應(yīng)用《數(shù)字與信息》。

以往教學(xué)公因數(shù)的概念,通常是直接找出兩個自然數(shù)的因數(shù),然后讓學(xué)生發(fā)現(xiàn)有的因數(shù)是兩個數(shù)公有的,從而揭示公因數(shù)和最大公因數(shù)的概念。本單元教材注意以直觀的操作活動,讓學(xué)生經(jīng)歷公因數(shù)和最大公因數(shù)概念的形成過程。這樣安排有兩點好處:一是學(xué)生通過操作活動,能體會公倍數(shù)和公因數(shù)的實際背景,加深對抽象概念的理解;二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在這節(jié)課上,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用邊長6厘米的正方形正好鋪滿長18厘米,寬12厘米的長方形。在發(fā)現(xiàn)結(jié)果的同時,還引導(dǎo)學(xué)生聯(lián)系除法算式進行思考,對直觀操作活動的初步抽象。再把初步發(fā)現(xiàn)的結(jié)論進行類推,發(fā)現(xiàn)用邊長1厘米、2厘米、3厘米6厘米的正方形都正好鋪滿長18厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、3、6這些數(shù)和18、12有什么關(guān)系。這時揭示公因數(shù)和最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合圖顯示公因數(shù)的意義。實實在在讓學(xué)生經(jīng)歷了概念的形成過程,效果較好。

例3中,教師宣布游戲規(guī)則后,放手讓學(xué)生動手操作,直觀感知——思考原因——想象延伸——討論思辨——明確意義。例4更是學(xué)生探究廣闊的平臺,教師拋出問題后,讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動了已有知識經(jīng)驗、方法、技能,八仙過海各顯神通,找出了各種求“12和18的公因數(shù)和最大公因數(shù)”的方法。在這個過程中,由學(xué)生自己建構(gòu)了公因數(shù)和最大公因數(shù)的概念,是真正主動探索知識的建構(gòu)者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識,也充分體現(xiàn)了教師駕馭教材,調(diào)控學(xué)生的能力。

課程標(biāo)準(zhǔn)只要求在1~100的自然數(shù)中,能找出10以內(nèi)兩個自然數(shù)的公倍數(shù)和最小公倍數(shù),二是只要求在1~100的自然數(shù)中,能找出兩個自然數(shù)的公因數(shù)和最大公因數(shù),而不是用分解質(zhì)因數(shù)的方法求出公倍數(shù)或公因數(shù)。不教學(xué)用分解質(zhì)因數(shù)的方法求最小公倍數(shù)和最大公因數(shù)還有兩個原因:一是通過列舉出兩個數(shù)的倍數(shù)或因數(shù)的方法,找出公倍數(shù)或公因數(shù)。突出對公倍數(shù)和公因數(shù)意義的理解;二是學(xué)生對用短除的形式求最大公因數(shù)和最小公倍數(shù)的算理理解有困難,減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān)。所以在教學(xué)找公倍數(shù)或公因數(shù)時,應(yīng)提倡思考方法多樣化。例4教學(xué)中,學(xué)生得出了三種方法來尋找12和18的公因數(shù)和最大公因數(shù)。(當(dāng)然到底是三種還是兩種有待商榷,不過在這里,為了便于比較我們姑且稱之為三種吧)這就存在了一個方法優(yōu)化的過程,哪一種方法會更簡單?通過對比,大多數(shù)學(xué)生贊同方法二。通過討論,引導(dǎo)學(xué)生以后解決此類問題時可以多運用較好的方法二。在這中間教師注意到了引導(dǎo)、小結(jié)、鼓勵,師生共同得出結(jié)論。

復(fù)習(xí)題中回顧了四年級知識基礎(chǔ)、列舉法和標(biāo)記法,在例3中,學(xué)生思考“還有哪些邊長整厘米的正方形紙片也能正好鋪滿這個長方形?”時就有了基礎(chǔ)。例4中,學(xué)生也知道用列舉法和標(biāo)記法來解決問題。

特別是用集合圖來表示因數(shù)和公因數(shù)的教學(xué)值得一提。有趣的游戲,預(yù)料中的爭執(zhí),恰到好處的體現(xiàn)了圖的妙用,圖的填法比一步步教學(xué)生如何填更有效,也更不易遺忘。練習(xí)五,第一題在填完集合圖后對公有因數(shù)和獨有因數(shù)意義的的提升,為下面的學(xué)習(xí)作了伏筆。體會初步的集合思想。

練一練,并沒有局限于畫畫△、○,找找公因數(shù)和最大公因數(shù),而是進一步指導(dǎo)學(xué)生觀察,發(fā)現(xiàn)公因數(shù)都比小的數(shù)小(18和30中,18是小的數(shù)),在18的因數(shù)中找公因數(shù)的確更快、更好些。

所以請老師們在平時的教學(xué)中也去分析、思考,把握例題和練習(xí)中每個需要提升之處,在課堂中時時注意方法和策略的滲透,較好地用實這套教材。

蘇教版公因數(shù)和最大公因數(shù)教學(xué)反思篇四

《公因數(shù)和最大公因數(shù)》這部分內(nèi)容是在學(xué)生理解因數(shù)與倍數(shù)的相互關(guān)系,會找1~100的自然數(shù)的因數(shù),并且在學(xué)習(xí)面積概念時積累了“密鋪”的活動經(jīng)驗開展教學(xué)的。對于《公因數(shù)和最大公因數(shù)》這樣一節(jié)概念課的教學(xué),其教學(xué)重、難點我認(rèn)為就是對“公”字意義的理解,也就是如何體驗這個數(shù)既是一個數(shù)的因數(shù),又是另一個數(shù)的因數(shù),才是兩個數(shù)“公有”的因數(shù)。為了突出本節(jié)課的教學(xué)重點、突破教學(xué)難點,結(jié)合我們本學(xué)期的教研主題“如何設(shè)計有效的教學(xué)活動,達成教學(xué)目標(biāo)”,我主要從以下幾方面入手來嘗試教學(xué):

第一次猜想:一個長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數(shù)的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學(xué)生帶著自己的思考去操作驗證,在操作中體會“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。

第二次猜想:現(xiàn)在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學(xué)生可以熟練地操作驗證,在活動體驗和交流中進一步感知選擇正方形時既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。

第三次猜想:繼續(xù)變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的正方形呢?學(xué)生繼續(xù)操作驗證。這時學(xué)生已經(jīng)有了前兩次的操作感知,積累了充分的活動經(jīng)驗,這些活動經(jīng)驗可以支撐他們?nèi)ネ评?、想象,找到能“擺滿沒有剩余”的本質(zhì),從而從整體感知正方形邊長的規(guī)律。

然后,發(fā)揮教師的主導(dǎo)作用:“我們前后共擺了三個長方形,得到了黑板上的這些數(shù)據(jù)。仔細(xì)想一想,這些正方形的邊長和什么有關(guān)?有怎樣的關(guān)系呢?”引導(dǎo)學(xué)生觀察數(shù)據(jù),發(fā)現(xiàn)規(guī)律,引出公因數(shù)和最大公因數(shù)的概念。

通過創(chuàng)設(shè)以上教學(xué)活動,讓學(xué)生在活動中實實在在地經(jīng)歷了公因數(shù)產(chǎn)生的過程,積累豐富的活動經(jīng)驗,充分體驗公因數(shù)的意義。

通過上面的操作體驗和思考認(rèn)知,學(xué)生認(rèn)識了公因數(shù)和最大公因數(shù),又經(jīng)歷了找公因數(shù)和最大公因數(shù)的過程,學(xué)生能感知“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”這三個概念之間存在著一些聯(lián)系。為了幫助學(xué)生深入地理解概念,提出問題:“對比這三個概念,現(xiàn)在你能說說它們之間的聯(lián)系與區(qū)別嗎?可以選其中兩個說一說。”引導(dǎo)學(xué)生進一步地思考。這時學(xué)生交流:“‘因數(shù)’是一個數(shù)的,而‘公因數(shù)’是兩個或兩個以上的數(shù)公有的”、“‘最大公因數(shù)’首先它也是‘公因數(shù)’中的一個,而且是‘公因數(shù)’中最大的一個。”根據(jù)學(xué)生的交流,我通過課件,借助韋恩圖形象直觀地演示了“因數(shù)”與“公因數(shù)”、“公因數(shù)”與“最大公因數(shù)”之間的關(guān)系,增進了學(xué)生對概念意義的理解。

在學(xué)生充分理解區(qū)分了“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”三個概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數(shù))”學(xué)生想到:這是個用因數(shù)的知識解決的問題,求每段可以是幾分米,也就是求16的因數(shù)。這時,引導(dǎo)學(xué)生改編成一個用公因數(shù)來解決的問題,學(xué)生首先想到了

少需要兩個數(shù)據(jù),于是有的學(xué)生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數(shù))”這樣的問題。在學(xué)生思考的過程,既是在進一步理解概念的意義,又找到了“公因數(shù)”、“最大公因數(shù)”概念的現(xiàn)實意義,培養(yǎng)了學(xué)生的數(shù)學(xué)抽象能力。

一節(jié)課下來,我發(fā)現(xiàn)學(xué)生是最棒的!在不斷地實踐探索中,他們的認(rèn)識不斷提升,我仿佛聽得到他們思維拔節(jié)的聲音。

1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關(guān)系環(huán)節(jié),有的孩子不能用數(shù)學(xué)的'眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個環(huán)節(jié)之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個好的思維支點。

2、因為操作感知時間較長,在本節(jié)課的第二個知識目標(biāo)——找公因數(shù)和最大公因數(shù)的方法環(huán)節(jié)就沒有充分的時間將孩子的各種方法展開交流,也是個小小的遺憾。

帶著原有的思考我們做了如上嘗試,然而一節(jié)課的時間是有限的,個人業(yè)務(wù)素養(yǎng)也有待提高,所以沒有做到面面俱到。好在一節(jié)課的結(jié)束并不意味著思考的終止,我又帶著實踐中的新問題上路了。期待著思考的路上,能得到更多領(lǐng)導(dǎo)、同行們的指點與批評!

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
你可能感興趣的文章
a.付費復(fù)制
付費獲得該文章復(fù)制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復(fù)制
付費后30天內(nèi)不限量復(fù)制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服