又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當前位置:網(wǎng)站首頁 >> 作文 >> 2023年從算式到方程第一課時教案(優(yōu)秀12篇)

2023年從算式到方程第一課時教案(優(yōu)秀12篇)

格式:DOC 上傳日期:2023-03-29 12:47:27
2023年從算式到方程第一課時教案(優(yōu)秀12篇)
時間:2023-03-29 12:47:27     小編:zdfb

作為一名教職工,總歸要編寫教案,教案是教學藍圖,可以有效提高教學效率。優(yōu)秀的教案都具備一些什么特點呢?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的教案范文,我們一起來了解一下吧。

從算式到方程第一課時教案篇一

1、理解什么是一元一次方程。

2、理 解什么是方程的解及解方程,學會檢驗一個數(shù)值是不是方程的 解的方法。

【重點難點】能驗證一個數(shù)是否是一個方程 的解。

【導學指導】

一、溫故知新

1:前面學 過有關方程的一些 知識,同學們能說出什么是方程嗎?

答: 叫做方程。

2: 判斷下列是不是 方程,是打“√”,不是打“×”:

① ;( ) ②3+4=7;( )

③ ;( )④ ;( )

⑤ ;( ) ⑥ ;( )

二、自主探究

1. 一元一次方程的概念

觀察下面方程的特點

(1)4 =24;(2)1700+150=2450

(3)0.52`-(1-0.52`)=80

小結:象上面方程,它們都含有 個未知數(shù)(元),未知數(shù)的次數(shù)都是 ,這樣的方程叫做一元一次方程。

(即方程的一邊或兩邊含有未知數(shù))

2.方程的解

如何求出使方程左右兩邊相等的未知數(shù)的值?

如方程 =4中, =?

方程 中的 呢?

請用小學所學過的逆運算嘗試解決上面的問題。

解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解。

例 檢驗2和-3是否為方程 的解。

解:當`=2時,

左邊= = ,

右邊= = ,

∵左邊 右邊(填=或≠)

∴`=2 方程的解(填是或不是)

當`= 時,

左邊= = ,

右邊= = ,

∵左邊 右邊(填=或≠)

∴`=3 方程的解(填是或不是)

【課堂練習】

1.判斷下列是不是一元一次方程,是打“√”,不是打“×”:

① =4;( ) ② ;( )

③ ; ( ) ④ ; ( )

⑤ ; ( ) ⑥3+4 =7 ;( )

2.檢驗3和-1是否為方程 的解。

3.`=1是下列方程( )的解:

(a) , ( b) ,

(c) ), ( d)

4 、已知方程 是關于`的一元一次方程,則a= 。

【要點歸納】:

1. 這節(jié)課我們學習了什么內(nèi)容?

2.什么是方程的解?如何檢驗一個數(shù)是否是方程的解?

【拓展訓練】:

1.檢驗2和 是否為方程 的解。

2.老師要求把一篇有20__字的文章輸入電腦,小明輸入了700字,剩下的讓小華輸入,小華平均每分鐘能輸入50個字,問:小華要多少分鐘才能完成?(請設未知數(shù)列出方程,并嘗試求出 方程的解)

從算式到方程第一課時教案篇二

一、創(chuàng)設情境,展示問題。

問題1:

世界最大的動物是藍鯨,一只藍鯨重124噸,比一頭大象體重的25倍少一噸,這頭大象重幾噸? 問題2: 章前圖中的汽車勻速行駛途經(jīng)王家莊、青山、秀水三地的時間如表所示,翠湖在青山、秀水之間,距青山50千米,距秀水70千米,王家莊到翠湖有多遠? 地名 時間 王家莊 10:00 青山 13:00 秀水 15:00 教師展示問題,要求用算術解法,讓學生充分發(fā)表意見。

算術方法:(124+1)÷25=5(噸)方程方法:可設大象重為`噸,則124=25`—1 學生獨立思考,小組交流,代表發(fā)言,解釋說明。

問題1的算術解法:

(50+70)÷2=60(千米/時) 605—70=230(千米) 問題1用算術法較容易解決,但問題2卻不容易解決,這樣產(chǎn)生矛盾沖突,使學生認識到進一步學習的必要性。 示意圖有助于分析問題。

二、尋找關系,列出方程。

1、對于問題1,如果設王家莊到翠湖的路程是`千米,則: 路程 時間 速度 王家莊—青山 王家莊—秀水 根據(jù)汽車勻速前進,可知各路段汽車速度相等,列方程。

2、比一比:列算式與列方程有什么不同?哪一個更簡便?

3、想一想:對于問題1,你還能列出其他方程嗎?如果能,你根據(jù)的是哪個相等關系?你認為列方程的關鍵是什么? 結合圖形,引導學生分析各路段的路程、速度、時間之間的關系,填寫表格。

學生思考回答:

1、王家莊—青山(`—50)千米,王家莊—秀水(`+70)千米。

2、汽車以每小時(`—50)÷3千米的速度從王家莊到青山;以每小時(`+70)÷5千米的速度從王家莊到秀水。 讓學生體會:用算術方法解題時,列出的算式只能用已知數(shù),而列方程解題時,方程中既含有已知數(shù),又含有用字母表示的未知數(shù)。

三、定義方程,建立模型。

1、定義:(板書)含有未知數(shù)的等式叫做方程。

練習一:判斷下列式子是不是方程,是的打“√”,不是的打“` ”。

(1)1+2=3 ( ) (2) 1+2`=4 ( ) (3) `+y=2 ( ) (1) `+1—3 ( ) (2) `2—1=0 ( )

練習二:根據(jù)下列問題,設未知數(shù)并列出方程。

(1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?解:設正方形的邊長為` cm。那么依題意得到方程:_________。

(2)一臺計算機已使用1700小時,預計每月再使用150小時,經(jīng)過多少月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時?解:經(jīng)過`月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時,那么依題意得到方程:_________。

(3)某校女生占全體學生的52%,比男生多80人,這個學校有多少學生?解:設這個學校的學生為`,那么女生數(shù)為 ,男生數(shù)為 。 由此依題意得到方程:________________。 [議一議]:上面的四個方程有什么共同點? 2、定義:只含有一個未知數(shù)(元`),未知數(shù)的指數(shù)是1次,這樣的方程叫做一元一次方程。

3、方程的解:再看剛才列出的方程:4`=24,你能觀察出當`=?時,4`的值正好等于24嗎。學生回答后總結方程的解和解方程的概念。

4、歸納分析實際問題中的數(shù)量關系,利用其中的相等關系 列出方程,是用數(shù)學解決實際問題的一種方法。

(學生舉例并完成練習一) 師生合作,根據(jù)數(shù)量關系列出方程。

教師結合練習給出方程、一元一次方程的定義。

(我國古代稱未知數(shù)為元,只含有一個未知數(shù)的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右兩邊相等的未知數(shù)的值就是這個方程的解。 教師引導學生對上面的分析過程進行思考,將實際問題轉化為數(shù)學問題的一般過程。

學生舉出方程的例子。

(學生獨立思考、互相討論,先分析出等量關系,再根據(jù)所設未知數(shù)列出方程) 判斷哪些是一元一次方程。 學生單獨計算,并填表。 學生得出解決實際問題的模型。

四、訓練鞏固,課堂小結。

1、根據(jù)下列問題,設未數(shù)列方程,并指出是不是一元一次方程。

(1)環(huán)形跑道一周長400m,沿跑道跑多少周,可以跑3000m?

(2)甲種鉛筆每枝0。3元,乙種鉛筆每枝0。6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?

(3)一個梯形的下底比上底多2㎝,高是5㎝,面積是40㎝2,求上底。

2、小結。

本節(jié)課你學到了哪些知識?哪些方法?

五、布置作業(yè)。

a、必做 82頁,第1、2、3、題;

b、 拓展阿凡提經(jīng)過了三個城市,第一個城市向他征收的稅是他所有錢財?shù)囊话胗秩种?,第二個城市向他征收的稅是他剩余錢財?shù)囊话胗秩种?,到第三個城市里,又向他征收他經(jīng)過兩次交稅后所剩余錢財?shù)囊话胗秩种唬斔氐郊业臅r候,他剩下了11個金幣,問阿凡提原來有多少個金幣?

c、課堂評價。

1、本節(jié)課的主要知識點是:

2、你對列方程這節(jié)課的感受是:3、這節(jié)課我的困惑是:

(1) 設跑`周。 列方程400`=3000

(2)設甲種鉛筆買了`枝,乙種鉛筆買了(20—`)枝。列方程 0。3`+0。6(20—`)=9 (3)設上底為` cm,下底為(`+2)cm。列方程 學生自己探索,獨立完成,集體訂正。 學生課后完成,并寫學習心得。

從算式到方程第一課時教案篇三

1.能根據(jù)題意用字母表示未知數(shù),然后分析出等量關系,再根據(jù)等量關系列 出方程.

2.理解方程、一元一次方程的定義及解的概念.

3.掌握檢驗某個數(shù)值是不是方程的解的方法.

閱讀教材p78~80,思考下列問題.

什么是方程、一元一次方程及它們的 解?怎樣列方程?

知識探究

1.含有未知數(shù)的等式叫方程.只含有一個未知數(shù),未知數(shù)的次數(shù)是1,這樣的方程叫做一元一次方程.

2.解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解.

自學反饋

根據(jù)下面實際問題中的數(shù)量關系,設未知數(shù)列出方程:

1.用一根長為2 4 cm的鐵絲圍成一個正方形,正方形的邊長為多少?

解:設正方形的邊長為` cm,列方程得:4`=24.

2.某校女生人數(shù)占全體學生數(shù)的52%,比男生多80人,這個學校有多少學生?

解:設這個學校的學生數(shù)為`,則女生數(shù)為52%`,男生數(shù)為52%`-80,依 題意得方程:52%`+52%`-80=`.

3.練習本每本0.8元,小明拿了10元錢買了若干本,還找回4.4元.問:小明買了幾本練習本?

解:設小明買了`本,列方程得:0.8`=10-4.4.

4.長方形的周長為24 cm,長比寬多2 cm,求長和寬分別是多少.

解:設長為`cm,則寬為(`-2)cm,依題意得方程:2(`+`-2)=24.

先設未知數(shù),再找相等關系,列方程.[來源:學+科+網(wǎng)z+`+`+k]

活動1小組討論

例1判斷下列是不是一元一次方程,是打“√”,不是打“×”.

①`+3=4;(√)

②-2`+3=1;(√)

③2`+13=6-y;(×)

④1`=6;(×)

⑤2`-8>-10;(×)

⑥3+4`=7`.(√)

例2檢驗2和-3是否為方程`-52-1=`-2的解.

解:-3是,2不是.

帶入方程中左右兩邊相等的值就是方程的解.

例3設未知數(shù)列出方程:

(1)用一根長為100 cm的鐵絲圍成一個正方形,正方形的邊長為多少?

(2)長方形的周長為40 cm,長比寬 多3 cm,求長和寬分別是多少.

(3)某校女生人數(shù)占全體學生數(shù)的55%,比男生多50人,這個學校有多少學生?

(4)a、b兩地相距200千米,一輛小車從a地開往b地,3小時后離b地還有20千米,求小車的平均速度.

解:略.

設未知數(shù),找等量關系,用方程表示簡單實際問題中的相等關系.

活動2跟蹤訓練

1.下列方程的解為`=2的是(c)

a.5-`=2

b.3`-1=4-2`

c.3-(`-1)=2`-2

d.`-4=5`-2

2.在2+1=3,4+`=1,y2-2y=3`,`2-2`+1中,一元一次方程有(a)

a.1個b.2個c.3個d.4個

3.老師要求把一篇有2 000字的文章輸入電腦,小明輸入了700字,剩下的讓小華輸入,小華平均每分鐘能輸入50個字,問:小華要多少分鐘才能完成?(請設未知數(shù)列出方程,并嘗試求出方程的解)

解:設小華要`分鐘完成,由題意,得

50`+700=2 000,

`=26.

活動3課堂小結

1.方程及一元一次方程的定義.

2.如何列方程,什么是方程的解.

3.1.2等式的性質

1.了解等式的兩條性質.

2.會用等式的性質解簡單的一元一次方程.

閱讀教材p81~82,思考下列問題.

1.等式的性質有哪幾條?用字母怎樣表示?字母代表什么?

2.解方程的依據(jù)是什么?

知識探究

1.如果a=b,那么a±c=b±c(字母a、b、c可以表示具體的數(shù),也可以表示一個式子).

2.如果a=b,那么ac=bc.

3.如果a=b(c≠0),那么ac=bc.

自學反饋

1.已知a=b,請用“=”或“≠”填空:

(1)3a=3b;(2)a4=b4;(3)-5a=-5b.

2.利用等式的性質解下列方程:

(1)`+7=26;

(2)- 5`=20;

(3)-2(`+1)=10.

解:(1)`=19.(2)`=-4.(3)`=-6.[來源:學_科_網(wǎng)]

注意用等式的性質對方程進行逐步變形,最終可變形為“`=a”的形式.

活動1小組討論

例利用等式的性質解下列方程并檢 驗:

(1)`-9 =6;

(2)-0.2`=10;

(3)3-13`=2;

(4)-2`+1=0;

(5)4(`+1)=-20.

解:(1)`=15.(2)`=-50.(3)`=3.(4)`=12.(5)`=-6.

運用等式的性質解方程不能漏掉某一邊或某一項.

活動2跟蹤訓練

利用等式的性質解下列方程并檢驗:

(1)`+5=8;[來源:學|科|網(wǎng)z|`|`|k]

(2)-`-1=0;[來源:學+科+網(wǎng)z+`+`+k]

(3)-2-14`=2;

(4)6`-2=0.

解:(1)`=3.(2)`=-1.(3)=-16.(4)`=13 .

活動3課堂小 結

1.等式有哪些性質?

2.在用等式的性質解方程時要注意什么?

會從實際問題中抽象出數(shù)學模型,會用一元一次方程解決電話計費等有關方案決策的問題.

閱讀教材p104~105探究3的內(nèi)容,思考題中所提出的問題.

知識探究

方案決策問題解題的基本方法是求得每種方案的結果,再結合結果做出判斷.[來源:第一范文網(wǎng)]

自學反饋

某市乘公交車(非空調(diào))每次需投幣1.5元或者購買ic卡,每次刷卡扣款1.35元,但辦理ic卡時需付工本費15元.問需乘坐公交車多少次時兩種收費方式的收費一 樣?當超過這個次數(shù)后哪種收費方 式較合算?[來源:z``]

解:100次,購買ic卡合算.

活動1小組討論

例(教 材p104探究3)電話計費問題

下表中有兩種移動電話計費方式.

月使用

費/元 主叫限定

時間/min 主叫超時

費/(元/min) 被叫

方式一 58 150 0.25 免費

方式二 88 350 0.19 免費

考慮下列問題:

(1)設一個月 用移動電話主叫為t min(t是正整數(shù)).根據(jù)上表,列表說明:當t在不同時間范圍內(nèi)取值時,按方式一和方式二如何計費;

(2)觀察你的列表,你能從中發(fā)現(xiàn)如何根據(jù)主叫時間選擇省錢的計費方式嗎?通過計算驗證你的看法.

活動2跟蹤訓練

某廠招聘運輸工,有兩種方法來結算工資,一種是每月基本工資300元,每運1噸貨給15元;另一種是沒有基本工資,每運1噸貨給20元.問每月運多少噸貨時兩種結算方法給的工資一樣多?如果某工人每月可運貨70噸,那么用哪種結算方法可多拿工資?

解:60噸,用第二種結算方法可多拿工 資.

活動3課堂小結

電話計費等有關的方案決策問題.

從算式到方程第一課時教案篇四

1、通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義;

2、了解什么是方程,什么是一元一次方程及什么是方程的解。

1、認識列方程解決問題的思想以及用字母表示未知數(shù),用方程表示相等關系的符號化的方法

2、結合從實際問題中得出的方程,學會用“去分母”解一元一次方程,進一步體會化歸的思想。體驗數(shù)學與日常生活密切相關,認識到許多實際問題可以用數(shù)學方法解決,激發(fā)學習數(shù)學的熱情。建立一元一次方程的概念。 問題與情境 師生活動 設計意圖

一、創(chuàng)設情境,展示問題:

問題1:世界最大的動物是藍鯨,一只藍鯨重124噸,比一頭大象體重的25倍少一噸,這頭大象重幾噸? 問題2: 章前圖中的汽車勻速行駛途經(jīng)王家莊、青山、秀水三地的時間如表所示,翠湖在青山、秀水之間,距青山50千米,距秀水70千米,王家莊到翠湖有多遠? 地名 時間 王家莊 10:00 青山 13:00 秀水 15:00 教師展示問題,要求用算術解法,讓學生充分發(fā)表意見。算術方法:(124+1)÷25=5(噸)方程方法:可設大象重為`噸,則124=25`-1 學生獨立思考,小組交流,代表發(fā)言,解釋說明。問題1的算術解法:(50+70)÷2=60(千米/時) 605-70=230(千米) 問題1用算術法較容易解決,但問題2卻不容易解決,這樣產(chǎn)生矛盾沖突,使學生認識到進一步學習的必要性。 示意圖有助于分析問題。

二、尋找關系,列出方程

1、對于問題1,如果設王家莊到翠湖的路程是`千米,則: 路程 時間 速度 王家莊-青山 王家莊-秀水 根據(jù)汽車勻速前進,可知各路段汽車速度相等,列方程。

2、比一比:列算式與列方程有什么不同?哪一個更簡便?

3、想一想:對于問題1,你還能列出其他方程嗎?如果能,你根據(jù)的是哪個相等關系?你認為列方程的關鍵是什么? 結合圖形,引導學生分析各路段的路程、速度、時間之間的關系,填寫表格。學生思考回答:

1、王家莊-青山(`—50)千米,王家莊-秀水(`+70)千米。

2、汽車以每小時(`-50)÷3千米的速度從王家莊到青山;以每小時(`+70)÷5千米的速度從王家莊到秀水。 讓學生體會:用算術方法解題時,列出的算式只能用已知數(shù),而列方程解題時,方程中既含有已知數(shù),又含有用字母表示的未知數(shù)。

三、定義方程,建立模型

1、定義:(板書)含有未知數(shù)的等式叫做方程。

練習一:判斷下列式子是不是方程,是的打“√”,不是的打“` ”.

(1)1+2=3 ( ) (4) ( ) (2) 1+2`=4 ( ) (5) `+y=2 ( ) (3) `+1-3 ( ) (6) `2-1=0 ( )

練習二:根據(jù)下列問題,設未知數(shù)并列出方程。

(1)用一根長24cm的鐵絲圍成一個正方形,正方形的邊長是多少?解:設正方形的邊長為` cm。那么依題意得到方程:_________. (2)一臺計算機已使用1700小時,預計每月再使用150小時,經(jīng)過多少月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時?解:經(jīng)過`月這臺計算機的使用時間達到規(guī)定的修檢時間2450小時,那么依題意得到方程:_________. (3)某校女生占全體學生的52%,比男生多80人,這個學校有多少學生?解:設這個學校的學生為`,那么女生數(shù)為 ,男生數(shù)為 . 由此依題意得到方程:________________。 [議一議]:上面的四個方程有什么共同點? 2、定義:只含有一個未知數(shù)(元`),未知數(shù)的指數(shù)是1次,這樣的方程叫做一元一次方程。

練習三:判斷下列方程哪些是一元一次方程?(1) (2) (3) (4) (5)

3、方程的解:再看剛才列出的方程:4`=24,你能觀察出當`=?時,4`的值正好等于24嗎。學生回答后總結方程的解和解方程的概念。

4、歸納分析實際問題中的數(shù)量關系,利用其中的相等關系 列出方程,是用數(shù)學解決實際問題的一種方法。 (學生舉例并完成練習一) 師生合作,根據(jù)數(shù)量關系列出方程。

教師結合練習給出方程、一元一次方程的定義。 (我國古代稱未知數(shù)為元,只含有一個未知數(shù)的方程叫做一元方程,一元方程的解也叫做根) 方程的解:使方程中左右兩邊相等的未知數(shù)的值就是這個方程的解. 教師引導學生對上面的分析過程進行思考,將實際問題轉化為數(shù)學問題的一般過程。

學生舉出方程的例子。 (學生獨立思考、互相討論,先分析出等量關系,再根據(jù)所設未知數(shù)列出方程) 判斷哪些是一元一次方程。 學生單獨計算,并填表。 學生得出解決實際問題的模型。

四、訓練鞏固,課堂小結

1、根據(jù)下列問題,設未數(shù)列方程,并指出是不是一元一次方程。(1)環(huán)形跑道一周長400m,沿跑道跑多少周,可以跑3000m?(2)甲種鉛筆每枝0.3元,乙種鉛筆每枝0.6元,用9元錢買了兩種鉛筆共20枝,兩種鉛筆各買了多少枝?(3)一個梯形的下底比上底多2㎝,高是5㎝,面積是40㎝2,求上底。

2、小結 本節(jié)課你學到了哪些知識?哪些方法?

五、布置作業(yè)a、 必做 82頁,第1、2、3、題; b、 拓展阿凡提經(jīng)過了三個城市,第一個城市向他征收的稅是他所有錢財?shù)囊话胗秩种?,第二個城市向他征收的稅是他剩余錢財?shù)囊话胗秩种唬降谌齻€城市里,又向他征收他經(jīng)過兩次交稅后所剩余錢財?shù)囊话胗秩种唬斔氐郊业臅r候,他剩下了11個金幣,問阿凡提原來有多少個金幣? c、課堂評價

1、 本節(jié)課的主要知識點是:

2、 你對列方程這節(jié)課的感受是:

3、 這節(jié)課我的困惑是: 解:(1) 設跑`周. 列方程400`=3000

4、 (2)設甲種鉛筆買了`枝,乙種鉛筆買了(20-`)枝.列方程 0.3`+0.6(20-`)=9 (3)設上底為` cm,下底為(`+2)cm.列方程 學生自己探索,獨立完成,集體訂正。 學生課后完成,并寫學習心得。

從算式到方程第一課時教案篇五

一、教材分析

(一)教材的地位和作用

方程是初等數(shù)學的基本知識,也是進一步學習一元一次方程,二元一次方程組,一元一次不等式及一元二次方程的基礎.方程在實際問題中的應用,是中學階段應用數(shù)學知識解決實際問題的重要開端,也是增強學生學習數(shù)學、應用數(shù)學意識的重要題材.本節(jié)教材主要起著承前啟后的作用,可以說是小學與中學內(nèi)容上的銜接點,方法上的分水嶺.

(二)教學內(nèi)容

“從算式到方程”新教材與原教材的顯著區(qū)別:方程這一部分內(nèi)容不是按照由定義到解法最后講應用的純數(shù)學體系編排,而是首先從實際問題出發(fā),通過比較算術方法與方程求解的區(qū)別,體會方程的優(yōu)越性,讓學生認識到從算式到方程是數(shù)學的一大進步.然后再通過具體實際問題所列方程,介紹方程等概念.新教材的編寫更加體現(xiàn)了數(shù)學的應用價值.

(三)教學重點難點

由于學生在小學階段已習慣用算術方法解決實際問題,對列方程不太熟練,為了防止學生仍停留在列算式解題的低層上,所以本節(jié)重點確定為:讓學生在討論問題、解決問題的過程中,比較列算式與列方程在分析數(shù)量關系上的區(qū)別及列方程時相等關系的建立.而本節(jié)中學生可能感到困難的仍是實際問題相等關系的建立.

二、目標分析

依據(jù)課程標準的要求,確定以下目標:

(一)知識與技能目標

1.了解方程等基本概念.

2.會根據(jù)具體問題中的數(shù)量關系列出方程.

(二)過程與方法目標

經(jīng)歷從具體問題中的數(shù)量相等關系列出方程的過程,體會并認識方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型,滲透數(shù)學建模的思想.

(三)情感目標

讓學生進一步認識到方程與現(xiàn)實世界的密切關系,感受數(shù)學的價值.培養(yǎng)學生獲取信息,分析問題,處理問題的能力。

三、教法與學法分析

根據(jù)本節(jié)內(nèi)容與現(xiàn)實生活聯(lián)系較緊密的特點,教學中選取學生熟悉的、感興趣的背景材料,充分調(diào)動學生的學習熱情.并恰當設計各種問題,讓學生在教師的引導下,通過小組討論、相互交流、動手操作、自主探索等活動,獲得知識,積累經(jīng)驗,體驗成功,積極推行自主學習、合作學習、探究學習等新的學習方式,努力完成教師和學生在教與學活動中角色的轉變.

四、教學過程分析

教學目標 ①進一步理解用等式的性質解簡簡單的(兩次運用等式的性質)一元一次方程

②初步具有解方程中的化歸意識;

③培養(yǎng)言必有據(jù)的思維能力和良好的思維品質.

教學重點 用等式的性質解方程。

知識難點 需要兩次運用等式的性質,并且有一定的思維順序。

教學過程(師生活動) 設計理念

復習引入 解下列方程:(1)`+7=1.2; (2)

在學生解答后的講評中圍繞兩個問題:

① 每一步的依據(jù)分別是什么?

② 求方程的解就是把方程化成什么形式?

這節(jié)課繼續(xù)學習用等式的性質解一元一次方程。 由于這一課時也是學習用等式的性質解方程,所以通過復習來引入比較自然。

探究新知 對于簡單的方程,我們通過觀察就能選擇用等式的哪一條性質來解,下列方程你也能馬上做出選擇嗎?

例1 利用等式的性質解方程:

0.5`-`=3.4 (2)

先讓學生對第(1)題進行嘗試,然后教師進行引導:

① 要把方程0.5`-`=3.4轉化為`=a的形式,必須去掉方程左邊的0.5,怎么去?

② 要把方程-`=2.9轉化為`=a的形式,必須去掉`前面的“-”號,怎么去?

然后給出解答:

解:兩邊減0.5,得0.5-`-0.5=3.4-0.5

化簡,得

-`=-2.9,、

兩邊同乘-1,得l

`=-2.9

小結:(1)這個方程的解答中兩次運用了等式的性質(2)解方程的目標是把方程最終化為`=a的形式,在運用性質進行變形時,始終要朝著這個目標去轉化.

你能用這種方法解第(2)題嗎?

在學生解答后再點評.

解后反思:

①第(2)題能否先在方程的兩邊同乘“一3”?

②比較這兩種方法,你認為哪一種方法更好?為什么?

允許學生在討論后再回答.

例2(補充)服裝廠用355米布做成人服裝和兒童服裝,成人服裝每套平均用布3.5米,兒童服裝每套平均用布1.5米.現(xiàn)已做了80套成人服裝,用余下的布還可以做幾套兒童服裝?

在學生弄清題意后,教師再作分析:如果設余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5`米,根據(jù)題意,你能列出方程嗎?

解:設余下的布可以做`套兒童服裝,那么這`套服裝就需要布1.5米,根據(jù)題意,得

80`×3.5+1.5`=355.

化簡,得

280+1.5`=355,

兩邊減280,得

280+1.5`-280=355-280,

化簡,得

1.5`=75,

兩邊同除以1.5,得`=50.

答:用余下的布還可以做50套兒童服裝.

解后反思:對于許多實際間題,我們可以通過設未知數(shù),列方程,解方程,以求出問題的解.也就是把實際問題轉化為數(shù)學問題.

問題:我們?nèi)绾尾拍芘袆e求出的答案50是否正確?

在學生代入驗算后,教師引導學生歸納出方法:檢驗一個數(shù)值是不是某個方程的解,可以把這個數(shù)值代入方程,看方程左右兩邊是否相等,例如:把`=50代入方程80×3.5+1.5`=355的左邊,得80×3.5+1.5×50=280+75=355

方程的左右兩邊相等,所以`=50是方程的解。

你能檢驗一下`=-27是不是方程 的解嗎? 不同層次的學生經(jīng)過嘗試就會有不同的收獲:一部分學生能獨立解決,一部分學生雖不能解答,但經(jīng)過老師的引導后,也能受到啟發(fā),這比純粹的老師講解更能激發(fā)學生的積級性。

這里補充一個例題的目的一是解方程的應用,二是前兩節(jié)課中已學到了方程,在這里可以進一步應用,三是使后面的“檢驗”更加自然。

解題的格式現(xiàn)在不一定要學生嚴格掌握。

課堂練習 ① 教科書第73頁練習 第(3)(4)題。

② 小聰帶了18元錢到文具店買學習用品,他買了5支單價為1.2元的圓珠筆,剩下的錢剛好可以買8本筆記本,問筆記本的單價是多少?(用列方程的方法求解)

建議:采用小組競賽的方法進行評議

小結與作業(yè)

課堂小結 建議:①先讓學生進行歸納、補充。主要圍繞以下幾個方面:

(1) 這節(jié)課學習的內(nèi)容。

(2) 我有哪些收獲?

(3) 我應該注意什么問題?

②教師對學生的學習情況進行評價。

③思考題 用等式的性質求`:-2`=-5`+7 引發(fā)競爭意識,提高自我評價和自我表現(xiàn)的機會,以達到激發(fā)興趣,鞏固知識的目的。評價包括對學生個人、小組,對學生的學習態(tài)度、情感投入及學習的效果方面等。

本課作業(yè) ① 必做題:教科書第73頁第4(1)、(2)、(4)題;補充:用等式的性質解方程:①3+4`=17;②4- =3

② 選做題:教科書第73頁第4(3)題,第74頁第10題。

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1、力求體現(xiàn)新課程理念:數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知

識經(jīng)驗基礎之上。教師應激發(fā)學生的學習積極性,向學生提供充分從事數(shù)學活動的機會……學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者.本設計從新課的引人、例題的處理(包括解題后的反思)、反饋練習及小結提高等各環(huán)節(jié)都力求充分體現(xiàn)這一點.

2、在傳統(tǒng)的課堂教學中,教師往往通過大量地講解,把學生變成任教師“灌輸”的“容

器”,學生只能接受、輸入并存儲知識,而教師進行的也只不過是機械地復制文化知識.新

課程的一個重要方面就是要改變學生的學習方式,將被動的、接受式的學習方式,轉變?yōu)閯邮謱嵺`、自主探索與合作交流等方式.本設計在這方面也有較好的體現(xiàn).

3、為突出重點,分散難點,使學生能有較多機會接觸列方程,本章把對實際問題的討論作為貫穿于全章前后的一條主線.對一元一次方程解法的討論始終是結合解決實際問題進行的,即先列出方程,然后討論如何解方程,這是本章的又一特點.本設計充分體現(xiàn)了這一特點.

從算式到方程第一課時教案篇六

第一課時

平面圖形的認識

教學目標:通過復習使同學進一步理解角、垂直與平行、三角形和四邊形的概念,掌握它們的特征和性質,以和各圖形的聯(lián)系。‘

教學過程:

直線、射線、線段。

提問:1)分別說一說什么叫直線、射線、線段?

直線、射線和線段有什么區(qū)別?

完成123頁上面的“做一做”。(同學筆做)

提問:1)什么叫做角?

2)角的大小與什么有關?

整理:把表中的空格填寫完整。

完成123頁下面“做一做”的1題、2題。

銳角

直角

鈍角

平角

周角

大于0°

小于90°

垂直與平行

提問:

1)在同一平面內(nèi),兩條直線的相互位置有哪幾種情況?

2)什么樣的兩條直線叫做互相垂直?

什么樣的兩條直線叫做互相平行?

回答:下面幾組直線中,哪組的兩條直線互相垂直?哪組的兩條直線互相平

完成教材124頁的“做一做”

三角形。

提問:

1)什么叫做三角形?

2)在下面的三角形中,頂點a的對邊是指哪一條邊?

先筆做:以頂點a的對邊為底,畫出三角形的高,并標出底和高。(前頁一幅圖)

在下面的表中填寫三角形的名稱和各自的特征。

名稱

圖形

特征

回答:銳角三角形、直角三角形、鈍角三角形的聯(lián)系與區(qū)別。

四邊形

提問:什么叫四邊形?

回答:看圖說出下面各圖的特點,再說一說圖中各字母表示什么

想一想:為什么說長方形、正方形都是特殊的平行四邊形?為什么說正方形是特殊的長方形?

完成125頁“做一做”中的1、2題。

從算式到方程第一課時教案篇七

(一)教材所處的地位

人教版《數(shù)學》七年級上冊第二章,本章由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運算的基礎,也是學習方程、不等式和函數(shù)的基礎。

(二)單元教學目標

(1)理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

(2)理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎上,進行整式的加減運算。

(3)理解整式中的字母表示數(shù),整式的加減運算建立在數(shù)的運算基礎上;理解合并同類項、去括號的依據(jù)是分配律;理解數(shù)的運算律和運算律性質在整式的加減運算中仍然成立。

(4)能分析實際問題中的數(shù)量關系,并列出整式表示 .體會用字母表示數(shù)后,從算術到代數(shù)的進步。

(5)滲透數(shù)學知識來源于生活,又要為生活而服務的辯證觀點;通過由數(shù)的加減過渡到整式的加減的過程,培養(yǎng)學生由特殊到一般的思維;體會整式的加減實質上就是去括號,合并同類項,結果總是比原來簡潔,體現(xiàn)了數(shù)學的簡潔美。

(三)單元教學的重難點

(1)重點:理解單項式、多項式的相關概念;熟練進行合并同類項和去括號的運算。

(2)難點:準確地進行合并同類項,準確地處理去括號時的符號。

(四)單元教學思路及策略

(1)注意與小學相關內(nèi)容的銜接。

(2)加強與實際的聯(lián)系。

(3)類比“數(shù)”學習“式”,加強知識的內(nèi)在聯(lián)系,重視數(shù)學思想方法的滲透。

(4)抓住重難點、加強練習。

(五)學生學習易錯點分析:

(1)忽視單項式的定義,誤認為式子 是單項式。

(2)忽視單項式系數(shù)的定義,誤認為 的系數(shù)是4.

(3)忽視單項式的次數(shù)的定義,誤認為3a的次數(shù)是0.

(4)忽視多項式的定義,誤認為 是單項式。

(5)忽視多項式的定義,誤認為 的次數(shù)是7.

(6)忽視多項式的項的定義,誤認為多項式 的項分別為 .

(7)把多項式的各項重新排列時,忽視要帶它前面的符號。

(8)忽視同類項的定義,誤認為2x3y4與-y4x3不是同類項。

(9)合并同類項時,誤把字母的指數(shù)也相加。

(10) 去括號時符號的處理。

(11)兩整式相減時,忽略加括號。

(六)教學建議:

(1)了解整式并學好合并同類項的關鍵是什么?

整式的加減法,實際上就是合并同類項,同類項的概念以及合并同類項的方法,是本章的重點,而同類項及其合并是以單項式為基礎的,所以,單項式的概念或意義是完成合并的關鍵。

(2)單項式與多項式有什么聯(lián)系與區(qū)別?

教材中先講單項式、后講多項式,然后概括為單項式、多項式統(tǒng)稱為整式,對于單項式的系數(shù),僅限于數(shù)字系數(shù)(單項式中的數(shù)字因數(shù)),這點務求仔細體會,切不可加以引申,而多項式?jīng)]有系數(shù);對于次數(shù),單項式的次數(shù)指,所有字母的指數(shù)之和,而多項式的次數(shù)是多項式中次數(shù)最高的項(單項式)的次數(shù),需要加以注意的問題是:單項式的系數(shù),包括它前面的符號,不要把常數(shù) 作為字母,單項式x的系數(shù)是1,且單獨一個數(shù)(零次單項式)或一個字母,也是單項式,對于0也是一個單項式;多項式的每一項都應包含它前面得符號;單項式和多項式得分母中不能含有字母。

(3)學習合并同類項的方法;

先把同類項分別作上記號,然后根據(jù)合并同類項的法則進行合并,合并后把多項式按某一字母降冪或升冪排列;當多項式中同類項的系數(shù)互為相反數(shù)時,合并后為0;

(4)什么是合并同類項中要加以注意的“兩同”?

合并同類項是整式加減的基礎,深入理解同類項的概念,又是掌握合并同類項的關鍵,教材中通過一個探究問題(三個填空題)的引入,進行比較、歸納,從而得出判斷同類項的 “兩同”標準:所含字母相同,并且相同字母的指數(shù)也相同,這樣的項叫做同類項。幾個常數(shù)項也是同類項,同類項至少有兩個,單項式不叫同類項。

(5)其它注意事項:

①整式中,只含一項的是單項式,否則是多項式。分母中含有字母的代數(shù)式不是整式,當然也不是單項式或多項式。

②單項式的次數(shù)是所有字母的指數(shù)之和;多項式的次數(shù)是多項式中最高次項的次數(shù)。

③單項式的系數(shù)包括它前面的符號,多項式中每一項的系數(shù)也包括它前面的符號。

④去括號時,要特別注意括號前面是“-”號的情形。

(七)課時安排:

第1課時 單項式

第2課時 多項式

第3課時 整式的加減(1)------合并同類項

第4課時 整式的加減(2)------去括號

第5課時 整式的加減(3)------一般步驟

第6課時 整式的加減(4)------化簡求值

第7課時 數(shù)學活動

第8課時 復習課

從算式到方程第一課時教案篇八

一、指導思想

堅持黨的基本路線,擁護中國共產(chǎn)黨的領導,貫徹黨的教育方針、政策,使自己真正成為時代前進的促進派。認真學習《教師法》、《教育法》、《義務教育法》、《教師職業(yè)道德規(guī)范》及《未成年人保護法》等法律法規(guī),使自己對各項法律法規(guī)有更高的認識,做到以法執(zhí)教。忠誠于黨的教育事業(yè),立足教壇,無私奉獻,全心全意地搞好教學工作,做一名合格的人民教師。

二、學生情況分析

本學期我擔任七年級3班數(shù)學教學,該班共有學生38人。七年級學生往往對課程增多、課堂學習容量加大不適應,顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導。學習離不開思維,善思則學得活,效率高,不善思則學得死,效果差。七年級學生常常固守小學算術中的思維定勢,思路狹窄、呆滯,不利于后繼學習,要重視對學生進行思法指導。學生在解題時,在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對學生進行寫法指導。學生是否掌握良好的記憶方法與其學業(yè)成績的好壞相關,七年級學生由于正處在初級的邏輯思維階段,識記知識時機械記憶的成份較多,理解記憶的成份較少,這就不能適應七年級教學的新要求,要重視對學生進行記法指導。

三、教學目標

(一)知識與技能

1.獲得數(shù)學中的基本理論、概念、原理和規(guī)律等方面的知識,了解并關注這些知識在生產(chǎn)、生活和社會發(fā)展中的應用。

2.學會將實踐生活中遇到的實際問題轉化為數(shù)學問題,從而通過數(shù)學問題解決實際問題。體驗幾何定理的探究及其推理過程并學會在實際問題進行應用。

3.初步具有數(shù)學研究操作的基本技能,一定的科學探究和實踐能力,養(yǎng)成良好的科學思維習慣。

(二)過程與方法

1.采用思考、類比、探究、歸納、得出結論的方法進行教學;

2.發(fā)揮學生的主體作用,作好探究性活動;

3.密切聯(lián)系實際,激發(fā)學生的學習的積極性,培養(yǎng)學生的類比、歸納的能力.

(三)情感態(tài)度與價值觀

1.理解人與自然、社會的密切關系,和諧發(fā)展的主義,提高環(huán)境保護意識。

2.逐步形成數(shù)學的基本觀點和科學態(tài)度,為確立辯證唯物主義世界觀奠定必在的基礎。

四、教材章節(jié)分析

第一章《有理數(shù)》

1.本章的主要內(nèi)容:

對正、負數(shù)的認識;有理數(shù)的概念及分類;相反數(shù)與絕對值的概念及求法;數(shù)軸的概念、畫法及其與相反數(shù)與絕對值的關系;比較兩個有理數(shù)大小的方法;有理數(shù)加、減、乘、除、乘方運算法則及相關運算律;科學計數(shù)法、近似數(shù)、有效數(shù)字的概念及求法。

重點:有理數(shù)加、減、乘、除、乘方運算

難點:混合運算的運算順序,對結果符號的確定及對科學計數(shù)法、有效數(shù)字的理解。

2.本章的地位及作用

本章的知識是本冊教材乃至整個初中數(shù)學知識體系的基礎,它一方面是算術到代數(shù)的過渡,另一方面是學好初中數(shù)學及與之相關學科的關鍵,尤其有理數(shù)的運算在整個數(shù)學及相關學科中占有極為重要的地位,可以說這一章內(nèi)容是構建“數(shù)學大廈”的地基。

第二章《整式的加減》

1.本章的主要內(nèi)容

列代數(shù)式,單項式及其有關概念,多項式及其有關概念,去括號法則,整式的加減,合并同類項,求代數(shù)式的值。

重點:去括號,合并同類項。

難點:對單項式系數(shù),次數(shù),多項式次數(shù)的理解與應用。

2.本章的地位及作用

整式是簡單代數(shù)式的一種形式,在日常生活中經(jīng)常要用整式表示有關的量,體現(xiàn)了變量與常量之間的關系,加深了對數(shù)的理解。本章中列代數(shù)式,去括號及合并同類項是后面學習一元一次方程的基礎,求代數(shù)式的值在中考命題中占有重要的地位。

第三章《一元一次方程》

1.本章的主要內(nèi)容

列方程,一元一次方程的概念及解法,列一元一次方程解應用題。

重點:列方程,一元一次方程的解法,

難點:解有分母的一元一次方程和應用一元一次方程解決實際問題。

2.本章的地位及作用

一元一次方程是數(shù)學中的主要內(nèi)容之一,它不僅是學習其它方程的基礎,而且是一種重要的數(shù)學思想——方程思想,利用方程思想可以使許多實際問題變得直接易懂,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。更深刻地體會數(shù)學的應用價值。

第四章《圖形認識初步》

1.本章的主要內(nèi)容、地位及作用

本章主要介紹了多姿多彩的圖形(立體圖形、平面圖?),以及最基本的圖形——點、線、角等,并在自主探究的過程中,結合豐富的實例,探索“兩點確定一條直線”和“兩點間線段最短”的性質,認識角以及角的表示方法,角的度量,角的畫法,角的比較及余角,補角等,探索了比較線段長短的方法及線段中點。本章中的直線,射線,線段以及角等,都是我們認識復雜圖形的基礎,因此,本章在初中數(shù)學中占有重要的地位。

2.教學重點與難點

教學重點:(1)角的比較與度量;(2)余角、補角的概念和性質;(3)直線、射線、線段和角的概念和性質

教學難點:(1)用幾何語言正確表達概念和性質;(2)空間觀念的建立。

五、具體教學策略

1.認真研讀新課程標準,鉆研新教材,根據(jù)新課程標準,擴充教材內(nèi)容,認真上課,批改作業(yè),認真輔導,讓學生學會認真學習。

2.興趣是的老師,激發(fā)學生的興趣,給學生介紹數(shù)學家、數(shù)學史,介紹相應的數(shù)學趣題,給出數(shù)學課外思考題,激發(fā)學生的興趣。

3.引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。引導學生寫復習提綱,使知識來源于學生的構造。

4.引導學生積極歸納解題規(guī)律,引導學生一題多解,多解歸一,培養(yǎng)學生透過現(xiàn)象看本質,提高學生舉一反三的能力,培養(yǎng)學生的發(fā)散思維,讓學生處于一種思如泉涌的狀態(tài)。

5.運用讀新課程標準的理念指導教學,積極更新自己腦海中固有的教育理念,不同的教育理念,將帶來不同的教育效果。

6.培養(yǎng)學生良好的學習習慣,有助于學生進步提高學習成績,發(fā)展學生的非智力因素,彌補智力上的不足。

7.進行個別輔導,優(yōu)生提升能力,扎實打牢基礎知識,對差生,一些關鍵知識,輔導差生過關,為差生以后的發(fā)展鋪平道路。

8.站在系統(tǒng)的高度,使知識構筑在一個系統(tǒng),上升到哲學的高度,八方聯(lián)系,渾然一體,使學生學得輕松,記得牢固。

9.開展課題學習,把學生帶入研究的學習中,拓展學生的知識面。

六、進度安排

教學內(nèi)容課時

1.1正數(shù)和負數(shù)1課時

1.2有理數(shù)4課時

1.3有理數(shù)的加減法4課時

1.4有理數(shù)的乘除法5課時

1.5有理數(shù)的乘方3課時

本章復習2課時

2.1整式2課時

2.2整式的加減3課時

本章復習2課時

3.1從算式到方程4課時

3.2從古老的代數(shù)說起—一元一次方程的討論(1)4課時

3.3從“買布問題”說起—一元一次方程的討論(2)4課時

3.4再探實際問題和一元一次方程4課時

本章復習2課時

4.1多姿多彩的圖形4課時

4.2直線、射線、線段2課時

4.3角的度量3課時

4.4角的比較和運算3課時

本章復習2課時

從算式到方程第一課時教案篇九

學習目標:

1、理解加減法統(tǒng)一成加法運算的意義.

2、會將有理數(shù)的加減混合運算轉化為有理數(shù)的加法運算.

3、培養(yǎng)學習數(shù)學的興趣,增強學習數(shù)學的信心.

學習重點、難點:有理數(shù)加減法統(tǒng)一成加法運算

教學方法:講練相結合

教學過程

一、學前準備

1、一架飛機作特技表演,起飛后的高度變化如下表:

高度的變化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米

記作 +4.5千米 —3.2千米 +1.1千米 —1.4千米

請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了 千米.

2、你是怎么算出來的,方法是

二、探究新知

1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!

2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.

3、師生共同歸納:遇到一個式子既有加法,又有減法,第一步應該先把減法轉化為 .再把加號記在腦子里,省略不寫

如:(-20)+(+3)-(-5)-(+7) 有加法也有減法

=(-20)+(+3)+(+5)+(-7) 先把減法轉化為加法

= -20+3+5-7 再把加號記在腦子里,省略不寫

可以讀作:“負20、正3、正5、負7的 ”或者“負20加3加5減7”.

4、師生完整寫出解題過程

三、解決問題

1、解決引例中的問題,再比較前面的方法,你的感覺是

2、例題:計算-4.4-(-4 )-(+2 )+(-2 )+12.4

3、練習:計算 1)(—7)—(+5)+(—4)—(—10)

三、鞏固

1、小結:說說這節(jié)課的收獲

2、p241、2

3、計算

1)27—18+(—7)—32 2)

四、作業(yè)

1、p255 2、p26第8題、14題

從算式到方程第一課時教案篇十

一、學情介紹

我本學期擔任初一七、八班的數(shù)學教學工作。初一(八)班共有學生55人,初一(七)班有學生56人。根據(jù)小學升初中考試的情況來分析學生的數(shù)學成績不算理想,總體的水平一般,往往對課程增多、課堂學習容量加大不適應,顧此失彼,精力分散,使聽課效率下降,因此要重視聽法的指導。學習離不開思維,善思則學得活,效率高,不善思則學得死,效果差。初一學生常常固守小學算術中的思維定勢,思路狹窄、呆滯,不利于后繼學習,要重視對學生進行思法指導。學生在解題時,在書寫上往往存在著條理不清、邏輯混亂的問題,要重視對學生進行寫法指導。學生是否掌握良好的記憶方法與其學業(yè)成績的好壞相關,初一學生由于正處在初級的邏輯思維階段,識記知識時機械記憶的成份較多,理解記憶的成份較少,這就不能適應初一教學的新要求,要重視對學生進行記法指導。本學期的工作重點是扭轉學生的學習態(tài)度,培養(yǎng)學生的好的學習習慣、創(chuàng)新意識,激發(fā)學生學習數(shù)學的熱情和興趣,培優(yōu)補差,同時強調(diào)對數(shù)學知識的靈活運用,反對死記硬背,以推動數(shù)學教學中學生素質的培養(yǎng)。

二、教學措施

1、根據(jù)今年學校及教科室計劃,認真構建“雙思三環(huán)六步”課堂教學模式,努力提高課堂教學的有效性和實效性。雙思”是指教師反思教學、學生反思學習;“三環(huán)”就是定向、內(nèi)化、發(fā)展;“六步”分別是指:提供資源(入境生趣)、了解學情(自學生疑)、弄清疑難(學習釋疑)、點難撥疑(練習解難)、反思教學(反思學習)、引導實踐(遷移創(chuàng)新)。我們要在反思中成長,學生要在反思中進步;我們要反思的主要內(nèi)容是怎樣優(yōu)化“三環(huán)六步”教學設計,不斷提高課堂教學效率;學生要反思的主要內(nèi)容學習積極性、學習策略和學習方法運用是否得當、不斷提高學習效率。

初一學生剛剛進入初中階段,正是從小學過度到初中學習的重要階段,也是進行“雙思三環(huán)六步”課堂教學模式的時期,要逐步的培養(yǎng)和完善這種模式,要求我們多研究、多思考、多創(chuàng)新、多探究。按照“低(起點)慢(速度)多(落點)高(標準)”元素結構教學法進行教學,“低起點”考慮到學生的基礎,初一學生從小學數(shù)學到初中數(shù)學的學習是一個飛躍,怎樣幫助學生慢慢過渡是一個難點,從細小的問題、每一個小知識點出發(fā)結合小學知識融匯到初中的知識中去,從而使學生很快接受知識?!奥俣取狈磳焖俣冉虒W,主張教學要考慮學生的學習規(guī)律和接受程度,兼顧初一學生的生理、心理、知識、能力、意志、品德等特征和差異,步步為營,梯次推進,使學生有效地掌握知識和培養(yǎng)能力?!岸嗦潼c”強調(diào)教育要考慮到初一學生個性差異的特點。個性差異是表現(xiàn)在多方面,不僅有年齡、性別、性格、身體的差異,還有很多學習上的差異,個人思維方式、生活方式的差異。推動不同層次的學生都有收獲?!案邩藴省睘閷W生確立的學習標準。而且把目標細化,使學生能很快達到,既能掌握知識又能體會到成功的愉悅,使初一的學生對數(shù)學充滿興趣,從而達到高效課堂的標準。

2、精心設計習題,使習題從簡單到復雜形成梯度,引導學生學會發(fā)散思維,培養(yǎng)學生創(chuàng)造性思維的能力,實現(xiàn)一題多解、舉一反三、觸類旁通,培養(yǎng)思維的靈活性。

3、批改作業(yè)做到全批全改,從過程到步驟嚴格要求,發(fā)現(xiàn)問題及時解決作認好總結,從初一使學生慢慢養(yǎng)成認真按步驟做作業(yè)的習慣。

4、繼續(xù)實行課前一題的模式。課前五分鐘每個班的課代表把上一節(jié)課涉及到的典型題目呈現(xiàn)在黑板上,學生在解題的過程中復習上一節(jié)的內(nèi)容,而且也能做到盡快把學生從課間拉回到上課的的狀態(tài),并力求把學生中新方法新思維挖掘出來。

5、實行一對一的幫扶活動,由好學生帶動一個差一點的學生,從知識、作業(yè)、學習習慣等各方面互幫互助,從而全面提高學生的綜合素質。

三、合理落實各項教學常規(guī)

1、備好課是上好課的基礎,是提高課堂教學質量的關鍵。根據(jù)“雙思三環(huán)六步”課堂教學模式,所以在備課時深入鉆研教材,正確地掌握和處理好教材的重點、難點,準備大量的、難度不同的習題備用,備課以個人獨立鉆研備課為主,在此基礎上進行集體備課,廣泛吸取其他老師的優(yōu)點和精華,完善自己的備課達到精益求精。

2、上課時要嚴格按照“雙思三環(huán)六步”課堂教學模式的步驟進行教學,講課時要圍繞中心內(nèi)容,突出重點,突破難點。整個教學過程要嚴密組織,使課堂教學既層次分明,又協(xié)調(diào)緊湊。教學時要面向全體學生,使各類學生都學有所得。特別是要照顧到差生,力求使他們能掌握本課時的基本知識和技能。

從算式到方程第一課時教案篇十一

教學目的和要求:

1.使學生了解有理數(shù)加法的意義。

2.使學生理解有理數(shù)加法的法則,能熟練地進行有理數(shù)加法運算。

3.培養(yǎng)學生分析問題、解決問題的能力,在有理數(shù)加法法則的教學過程中,注意培養(yǎng)學生的觀察、比較、歸納及運算能力。(在教學中適當滲透分類討論思想)

教學重點和難點:

重點:理解有理數(shù)加法法則,運用有理數(shù)加法法則進行有理數(shù)加法運算。

難點:理解有理數(shù)加法法則,尤其是異號兩數(shù)相加的情形。

教學工具和方法:

工具:應用投影儀,投影片。

方法:分層次教學,講授、練習相結合。(采取合作探究式教學方法,讓學生在合作學習中學習知識,掌握方法。)

教學過程:

一、復習引入:

1.在小學里,已經(jīng)學過了正整數(shù)、正分數(shù)(包括正小數(shù))及數(shù)0的四則運算?,F(xiàn)在引入了負數(shù),數(shù)的范圍擴充到了有理數(shù)。那么,如何進行有理數(shù)的運算呢?

2.問題:[

一位同學沿著一條東西向的跑道,先走了20米,又走了30米,能否確定他現(xiàn)在位于原來位置的哪個方向,相距多少米?

我們知道,求兩次運動的總結果,可以用加法來解答??墒巧鲜鰡栴}不能得到確定答案,因為問題中并未指出行走方向。(大部分同學都會用小學學過的的知識來完成。先給予肯定,鼓勵同學們對小學知識的掌握程度,再鼓勵同學們想想還有沒有其他情況)

[來源:學#科#網(wǎng)]

二、講授新課:

1.發(fā)現(xiàn)、總結(分類):

我們必須把問題說得明確些,并規(guī)定向東為正,向西為負。

(同號兩數(shù)相加法則)

(1)若兩次都是向東走,很明顯,一共向東走 了50米,寫成算式就是: (+20)+(+30)=+50,

即這位同學位于原來位置的東方50米處。這一運算在數(shù)軸上表示如圖:

(2)若兩次都是向西走,則他現(xiàn)在位于原來位置的西方50米處,

寫成算式就是: (―20)+(―30)=―50。

(師生共同歸納同號兩數(shù)相加法則:[來源:z+··+]

同號兩數(shù)相加,取相同的符號,并把絕對值相加)

(異號兩數(shù)相加法則)

(3)若第一次向東走20米,第二次向西走30米,我們先在數(shù)軸上表示如圖:

寫成算式是(+20)+(―30)=―10,即這位同學位于原來位置的西方10米處。

(4)若第一次向西走20米,第二次向東走30米,寫成算式是:(―20)+(+30)=( )。即這位同學位于原來位置的( )方( )米處。

后兩種情形中,兩個加數(shù)符號不同(通常可稱異號),所得和的符號似乎不能確定,讓我們再試幾次(下式中的加數(shù)不妨仍可看作運動的方向和路程):

你能發(fā)現(xiàn)和與兩個加數(shù)的符號和絕對值之間有什么關系嗎?

(+4)+(―3)=( ); (+3)+(―10)=( );

(―5)+(+7)=( ); (―6)+ 2 = ( )。

再看兩種特殊情形:

(5)第一次向西走了30米,第二次向東走了30米.寫成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次沒走.寫成算式是:(―30)+ 0 =( )。我們不難得出它們的結果。

(師生共同歸納異號兩數(shù)相加法則:

絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值)

(互為相反數(shù)的兩數(shù)相加為零

問題:會不會出現(xiàn)和為0的情況?

(5)第一次向西走了30米,第二次向東走了30米.寫成算式是:(―30)+(+30)= ( )。

師生共同歸納法則3:互為相反數(shù)的兩數(shù)相加得0)

問題:你能有法則來解釋法則3嗎?

學生回答:可以用異號兩數(shù)相加的法則)

((6)第一次向西走了30米,第二次沒走.寫成算式是:(―30)+0= ( )。我們不難得出它們的結果。

一般地,一個數(shù)同0相加,仍得這個數(shù))

2.概括:

綜合以上情形,我們得到有理數(shù)的加法法則:

(1) 同號兩數(shù)相加,取相同的符號,并把絕對值相加;

(2) 絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;

(3) 互為相反數(shù)的兩個數(shù)相加得0;

(4)一個數(shù)同0相加,仍得這個數(shù).

注意:

一個有理數(shù)由符號和絕對值兩部分組成,所以進行加法運算時,必須分別確定和的符號和絕對值.這與小學階段學習加法運算不同。

3.例題:

例:計算:

(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。

解:(1)解原式=―(11―2)=―9;

(2)解原式=+(20+12)=+32=32;

(3)解原式=;

(4)解原式= +(4.3―3.4)=0.9。

4.五分鐘測試:

計算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。

三、課堂小結:

這節(jié)課我們從實例出發(fā),經(jīng)過比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問題.

應用有理數(shù)加法法則進行計算時,要同時注意確定“和”的符號、計算“和”的絕對值兩件事。

(運算的關鍵:先分類,在按法則運算

運算步驟:先確定符號,再計算絕對值

注意問題:要借助數(shù)軸來進一步驗證有理數(shù)的加法法則)

四、課堂作業(yè):

課本:p18:1,2,3。

板書設計:

教學后記:

從算式到方程第一課時教案篇十二

一、教學目標

(一).知識與技能

會利用合并同類項解一元一次方程.

(二).過程與方法

通過對實例的分析,體會一元一次方程作為實際問題的數(shù)學模型的作用.

(三).情感態(tài)度與價值觀

開展探究性學習,發(fā)展學習能力.

二、重、難點與關鍵

(一).重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程.

(二).難點:會列一元一次方程解決實際問題.

(三).關鍵:抓住實際問題中的數(shù)量關系建立方程模型.

三、教學過程

(一)、復習提問

1.敘述等式的兩條性質.

2.解方程:4(·- )=2.

解法1:根據(jù)等式性質2,兩邊同除以4,得:

·- =

兩邊都加 ,得·= .

解法2:利用乘法分配律,去掉括號,得:

4·- =2

兩邊同加 ,得4·=

兩邊同除以4,得·= .

(二)、新授

公元825年左右,中亞細亞數(shù)學家阿爾、花拉子米寫了一本代數(shù)書,重點論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個問題.

問題1:某校三年級共購買計算機140臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,前年這個學校購買了多少臺計算機?

分析:設前年這個學校購買了·臺計算機,已知去年購買數(shù)量是前年的2倍,那么去年購買2·臺,又知今年購買數(shù)量是去年的2倍,則今年購買了22·(即4·)臺.

題目中的相等關系為:三年共購買計算機140臺,即

前年購買量+去年購買量+今年購買量=140

列方程:·+2·+4·=140

如何解這個方程呢?

2·表示2·,4·表示4·,·表示1·.

根據(jù)分配律,·+2·+4·=(1+2+4)·=7·.

這樣就可以把含·的項合并為一項,合并時要注意·的系數(shù)是1,不是0.

下面的框圖表示了解這個方程的具體過程:

·+2·+4·=140

合并

7·=140

系數(shù)化為1

·=20

由上可知,前年這個學校購買了20臺計算機.

上面解方程中合并起了化簡作用,把含有未知數(shù)的項合并為一項,從而達到把方程轉化為a·=b的形式,其中a、b是常數(shù).

例:某班學生共60分,外出參加種樹活動,根據(jù)任何的不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比是2:3:5,求各小組人數(shù).

分析:這里甲、乙、丙三個小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應設每一份為·人.

問:本題中相等關系是什么?

答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.

解:設每一份為·人,則甲組人數(shù)為2·人,乙組人數(shù)為3·人,丙組為5·人,列方程:

2·+3·+5·=60

合并,得10·=60

系數(shù)化為1,得·=6

所以2·=12,3·=18,5·=30

答:甲組12人,乙組18人,丙組30人.

請同學們檢驗一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.

(三)、鞏固練習

1.課本第89頁練習.

(1)·=3.

(2)可以先合并,也可以先把方程兩邊同乘以2.

具體解法如下:

解法1:合并,得( + )·=7

即 2·=7

系數(shù)化為1,得·=

解法2:兩邊同乘以2,得·+3·=14

合并,得 4·=14

系數(shù)化為1,得 ·=

(3)合并,得-2.5·=10

系數(shù)化為1,得·=-4

2.補充練習.

(1)足球的表面是由若干個黑色五邊形和白色六邊形皮塊圍成的,黑白皮塊的數(shù)目比為3:5,一個足球的表面一共有32個皮塊,黑色皮塊和白色皮塊各有多少?

(2)某學生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設未知數(shù),列方程,不求解)

解:(1)設每份為·個,則黑色皮塊有3·個,白色皮塊有5·個.

列方程 3·+2·=32

合并,得 8·=32

系數(shù)化為1,得 ·=4

黑色皮塊為43=12(個),白色皮塊有54=20(個).

(2)設全書共有·頁,那么第一天讀了( ·+2)頁,第二天讀了( ·-1)頁.

本問題的相等關系是:第一天讀的量+第二天讀的量+還剩23頁=全書頁數(shù).

列方程: ·+2+ ·-1+23=·.

四、課堂小結

初學用代數(shù)方法解應用題,感到不習慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關系是關鍵也是難點,本節(jié)課的兩個問題的相等關系都是:總量=各部分量的和.這是一個基本的相等關系.

合并就是把類型相同的項系數(shù)相加合并為一項,也就是逆用乘法分配律,合并時,注意·或-·的系數(shù)分別是1,-1,而不是0.

五、作業(yè)布置

1.課本第93頁習題3.2第1、3(1)、(2)、4、5題.

2.選用課時作業(yè)設計.

合并同類項習題課(第2課時)

一、解方程.

1.(1)3·+3-2·=7; (2) ·+ ·=3;

(3)5·-2-7·=8; (4) y-3-5y= ;

(5) - =5; (6)0.6·- ·-3=0.

二、解答題.

2.育紅小學現(xiàn)有學生320人,比1995年學生人數(shù)的 少150人,問育紅小學1995年學生人數(shù)是多少?

3.甲、乙兩地相距460千米,a、b兩車分別從甲、乙兩地開出,a車每小時行駛60千米,b車每小時行駛48千米.

(1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?

(2)兩車相向而行,a車提前半小時出發(fā),則在b車出發(fā)后多少小時兩車相遇?相遇地點距離甲地多遠?

4.甲、乙二人從a地去b地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達b地,求a、b兩地之間的距離.

5.一條環(huán)形跑道長400米,甲練習騎自行車,平均每分鐘行駛550米;乙練習長跑,平均每分鐘跑250米,兩人同時、同地、同向出發(fā),經(jīng)過多少時間,兩人首次相遇?

答案:

一、1.(1)·=4 (2)·=4 (3)·=-5 (4)·=- (5)·=30 (6)·=11

二、2.705人,設育紅小學1995年學生人數(shù)為·人,列方程320= ·-150.

3.(1)4 小時,設出發(fā)后·小時相遇,列方程60·+48·=460.

(2)3 小時,設b車開出后·小時兩車相遇,列方程60 +60·+48·=460.

4.3千米,設a、b兩地間的距離為·千米, - = .

5.1 分鐘,設經(jīng)過·分鐘兩人首次相遇,列方程550·-250·=400.

解一元一次方程

──移項(第3課時)

一、教學內(nèi)容

課本第89頁至第91頁.

二、教學目標

(一).知識與技能

理解移項法,并知道移項法的依據(jù),會用移項法則解方程.

(二).情感態(tài)度與價值觀

鼓勵學生自主探索與合作交流,發(fā)展思維策略,體會方程的應用價值.

三、重、難點與關鍵

(一).重點:運用方程解決實際問題,會用移項法則解方程.方程的各項應包括前面的符號

(二).難點:對立相等關系.

(三).關鍵:理解移項法則的依據(jù),以及尋找問題中的等量關系.

四、教學過程 (一)、復習提問

1.運用方程解決實際問題的步驟是什么?

2.解方程: + =10.

(二)、新授

問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本,這個班有多少學生?

分析:設這個班有·名學生,根據(jù)第一種分法,分析已知量和未知量間的關系.

1.每人分3本,那么共分出多少本?(3·本)

2.共分出3·本和剩余的20本,可知道什么?

答:這批書共有(3·+20)本.

根據(jù)第二種分法,分析已知量與未知量之間的關系.

3.每人分4本,那么需要分出多少本?(4·本)

4.需要分出4·本和還缺少25本那么這批書共有多少本?

答:這批書共有(4·-25)本.

這批書的總數(shù)有幾種表示法?它們之間有什么關系?本題哪個相等關系可以作為列方程的依據(jù)?

這批書的總數(shù)是一個定值(不變量)表示它的兩個式子應相等.

根據(jù)這一相等關系,列方程:

3·+20=4·-25

本題還可以畫示意圖,幫助我們分析:

從示意圖中容易得到這批書的總數(shù)與分出書、剩下書的關系是:

這批書的總數(shù)=3·+30

這批書的總數(shù)與需要分出的書的數(shù)量、還缺少書的數(shù)量關系是:

這批書的總數(shù)=4·-25

根據(jù)兩種分法,這批書的總數(shù)是相等的.

所以,列方程3·+20=4·-25.

注意變化中的不變量,尋找隱含的相等關系,從本題列方程的過程,可以發(fā)現(xiàn):表示同一個量的兩個不同式子相等.

思考:方程3·+20=4·-25的兩邊都含有·的項(3·與4·),也都含有不含字母的常數(shù)項(20與-25)怎樣才能使它轉化為·=a(常數(shù))的形式呢?

要使方程右邊不含·的項,根據(jù)等式性質1,兩邊都減去4·,同樣,把方程兩邊都減去20,方程左邊就不含常數(shù)項20,即

3·+20 -4·-20 =4·-25 -4·-20

即 3·-4·=-25-20

將它與原來方程比較,相當于把原方程左邊的+20變?yōu)?20后移到方程右邊,把原方程右邊的4·變?yōu)?4·后移到左邊.

像上面那樣,把等式一邊的某項變號后移到另一邊,叫做移項.

方程中的任何一項都可以在改變符號后,從方程的一邊移到另一邊,即可以把方程等號右邊的項改變符號后移到等號的左邊,也可以把方程左邊的項改變符號后移到方程的右邊,注意要先變號后移項,別忘了變號.

下面的框圖表示了解這個方程的具體過程.

3·+20=4·-25

移項

3·-4·=-25-20

合并

-·=-45

系數(shù)化為1

·=46

由此可知這個班共有45個學生.

思考:上面解方程中移項起了什么作用?

答:移項使方程中含·的項歸到方程的同一邊(左邊),不含·的項即常數(shù)項歸到方程的另一邊(右邊),這樣就可以通過合并把方程轉化為·=a形式.

在解方程時,要弄清什么時候要移項,移哪些項,目的是什么?

解方程時經(jīng)常要合并和移項,前面提到的古老的代數(shù)書中的對消和還原,指的就是合并和移項.

如果把上面的問題2的條件不變,這個班有多少學生改為這批書有多少本?你會解嗎?試試看.

解法1:從原問題的解答中,已求的這個班有45個學生,只要把·=45代入3·+20(或4·-25)就可以求得這批書的總數(shù)為:

345+20=135+20=155(本)

解法2:如果不先求學生數(shù),直接設這批書共有·本,又如何布列方程?這時該用哪個相等關系列方程呢?

這批書共有·本,余下20本,共分出(·-20)本,每人分3本,可以分給 人,即這個班共有 人.

這批書有·本,每人分4本,還缺少25本,共需要(·+25)本,可以分給 人,即這個班共有 人.

這個班的人數(shù)是一個定值,表示它的兩個式子應相等,根據(jù)這個相等關系列方程.

= (你會解這個方程嗎?)

即 - = +

移項,得 - = +

合并,得 =

系數(shù)化為1,得·=155.

答:這批書共有155本.

(三)、鞏固練習

1.課本第91頁練習.

(1)解:移項,得6·-4·=-5+7

合并,得 2·=2

系數(shù)化為1,得·=1

(2)解:移項,得 ·- ·=6

合并,得- ·=6

系數(shù)化為1,得·=-24

2.補充練習.

下列移項對不對?如果不對,錯在哪里?應當怎樣改正?

(1)從3·+6=0得3·=6;

(2)從2·=·-1得到2·-·=1;

(3)從2+·-3=2·+1得到2-3-1=2·-·.

解:(1)錯,移項忘了要變號,應改為3·=-6.

(2)錯.原方程中的-1仍然在方程右邊,并沒有移項,所以不要變號,應改為2·-·-=-1.

(3)正確.

四、課堂小結

1.列一元一次方程解決實際問題的關鍵是審題、讀懂題意和找相等關系,今天解決的這個問題的相等關系不明顯,隱含在問題中,表示同一個量的兩個式子是相等.這個相等關系可以作列方程的依據(jù).

2.正確理解移項法則,移項中常犯的錯誤是忘記變號,還要注意移項與在方程的一邊交換兩項的位置有本質區(qū)別,移項的依據(jù)是等式性質,在方程的一邊交換兩項的位置是根據(jù)交換律.

五、作業(yè)布置

1.課本第93頁至第94頁習題3.2第2、3(3)(4)、6、7、8題.

2.選用課時作業(yè)設計.

移項習題課(第4課時)

一、填空題.

1.在方程的兩邊加上或減去同一項,相當于把原方程中的項______后,從方程的一邊移到另一邊,這種變形叫做________,其依據(jù)是________,移項要注意_____.

2.在方程的一邊交換兩項的位置______改變項的符號,而移項______改變符號.

3.解方程·+21=36得·=________;由10·-3=9得·=______.

二、判斷題.(對的打,錯的打)

4.移項就是把方程中的某一項移到等號的另一邊.( )

5.從6·=1,移項,得·=1-6,·=-5. ( )

6.由方程-4+·=7移項得·=7-4. ( )

三、解方程.

7.(1)8=7-2y; (2) = - ;

(3)5·-2=7·+8; (4)1- ·=3·+ ;

(5)2·- =- +2; (6)- ·+6=4·+1;

(7) -·=0.5·-3.

四、解答題.

8.設m=3·-2,n=-2·+3,當·為何值時m=n?

9.甲糧倉存糧1000噸,乙糧倉存糧798噸,現(xiàn)要從兩個糧倉中運走212噸糧食,使兩倉庫剩余的糧食數(shù)量相等,那么應從這兩個糧倉各運出多少噸?

答案:

一、1.合并 移項 合并同類項 變號 2.不 要 3.15 1.2

二、4. 5. 6.

三、7.(1)y=- (2)·= (3)·=-5 (4)·=-

(5)·=1 (6)·= (7)·=3

四、8.·=1 9.207,5,設從甲糧倉運出·噸,1000-·=798-(212-·)

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內(nèi)不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服