作為一名教職工,就不得不需要編寫(xiě)教案,編寫(xiě)教案有利于我們科學(xué)、合理地支配課堂時(shí)間。怎樣寫(xiě)教案才更能起到其作用呢?教案應(yīng)該怎么制定呢?以下我給大家整理了一些優(yōu)質(zhì)的教案范文,希望對(duì)大家能夠有所幫助。
初中數(shù)學(xué)教案篇一
1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫(huà)出反比例函數(shù)的圖象,說(shuō)出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關(guān)問(wèn)題。
1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過(guò)程,會(huì)說(shuō)出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問(wèn)題。
一、創(chuàng)設(shè)情境
上節(jié)的練習(xí)中,我們畫(huà)出了問(wèn)題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來(lái)討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫(huà)出函數(shù)的圖象。
分析畫(huà)出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:
2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來(lái),得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來(lái),得到圖象的另一個(gè)分支。這兩個(gè)分支合起來(lái),就是反比例函數(shù)的圖象。
上述圖象,通常稱(chēng)為雙曲線(hyperbola)。
提問(wèn)這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫(huà)出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫(huà)反比函數(shù)圖象,進(jìn)一步掌握畫(huà)函數(shù)圖象的步驟)。
學(xué)生討論、交流以下問(wèn)題,并將討論、交流的結(jié)果回答問(wèn)題。
1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
注
1、雙曲線的兩個(gè)分支與x軸和y軸沒(méi)有交點(diǎn);
2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱(chēng)。
以上兩點(diǎn)性質(zhì)在上堂課的問(wèn)題1和問(wèn)題2中反映了怎樣的實(shí)際意義?
在問(wèn)題1中反映了汽車(chē)比自行車(chē)的速度快,小華乘汽車(chē)比騎自行車(chē)到鎮(zhèn)上的時(shí)間少。
在問(wèn)題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長(zhǎng),另一邊越小。
三、實(shí)踐應(yīng)用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過(guò)的象限。
分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k0,所以直線與y軸的交點(diǎn)在x軸的上方。
解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過(guò)一、二、四象限。
例3已知反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2)。
(1)求這個(gè)函數(shù)的解析式,并畫(huà)出圖象;
(2)若點(diǎn)a(—5,m)在圖象上,則點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱(chēng)點(diǎn)是否還在圖象上?
分析(1)反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過(guò)列表、描點(diǎn)、連線可畫(huà)出反比例函數(shù)的圖象;
(2)由點(diǎn)a在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)a關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱(chēng)點(diǎn)是否在圖象上。
解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
(2)點(diǎn)a(—5,m)在反比例函數(shù)圖象上,所以,
點(diǎn)a的坐標(biāo)為。
點(diǎn)a關(guān)于x軸的對(duì)稱(chēng)點(diǎn)不在這個(gè)圖象上;
點(diǎn)a關(guān)于y軸的對(duì)稱(chēng)點(diǎn)不在這個(gè)圖象上;
點(diǎn)a關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)在這個(gè)圖象上;
例4已知函數(shù)為反比例函數(shù)。
(1)求m的值;
(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
(3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
(2)因?yàn)椤?<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。
(3)因?yàn)樵诘趥€(gè)象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時(shí),y最大值=;
當(dāng)x=—3時(shí),y最小值=。
所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。
例5一個(gè)長(zhǎng)方體的體積是100立方厘米,它的長(zhǎng)是y厘米,寬是5厘米,高是x厘米。
(1)寫(xiě)出用高表示長(zhǎng)的函數(shù)關(guān)系式;
(2)寫(xiě)出自變量x的取值范圍;
(3)畫(huà)出函數(shù)的圖象。
解(1)因?yàn)?00=5xy,所以。
(2)x>0。
(3)圖象如下:
說(shuō)明由于自變量x>0,所以畫(huà)出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。
四、交流反思
本節(jié)課學(xué)習(xí)了畫(huà)反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
五、檢測(cè)反饋
1、在同一直角坐標(biāo)系中畫(huà)出下列函數(shù)的圖象:
(1);(2)。
2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:
(1)y和x的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),y的值;
(3)當(dāng)x取何值時(shí),?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過(guò)點(diǎn)a(2,—m)和b(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點(diǎn)p1(x1,y1)和p2(x2,y2),且x1<0
初中數(shù)學(xué)教案篇二
現(xiàn)代教學(xué)論研究指出,從本質(zhì)上講,學(xué)生學(xué)習(xí)的根本原因是問(wèn)題。在數(shù)學(xué)課堂教學(xué)中,教師可根據(jù)不同的教學(xué)內(nèi)容,圍繞不同的教學(xué)目標(biāo),設(shè)計(jì)出符合學(xué)生實(shí)際的教學(xué)問(wèn)題,圍繞所設(shè)計(jì)的問(wèn)題開(kāi)展教學(xué)活動(dòng)。這樣,在課堂教學(xué)環(huán)節(jié)中,問(wèn)題該怎樣設(shè)計(jì)?圍繞問(wèn)題該怎樣進(jìn)行教學(xué),才能使教學(xué)效率得以提高?這是擺在我們面前急需解決的問(wèn)題。
本文將結(jié)合自己的教學(xué)實(shí)踐,就問(wèn)題設(shè)計(jì)的策略及反思等方面談?wù)勛约旱目捶ā?/p>
著名數(shù)學(xué)家費(fèi)賴(lài)登塔爾認(rèn)為:“數(shù)學(xué)源于現(xiàn)實(shí)又寓于現(xiàn)實(shí),數(shù)學(xué)教學(xué)應(yīng)從學(xué)生所接觸的客觀實(shí)際中提出問(wèn)題,然后升華為數(shù)學(xué)概念、運(yùn)算法則或數(shù)學(xué)思想?!边@一觀念既反映了數(shù)學(xué)的本質(zhì),同時(shí)說(shuō)明了在數(shù)學(xué)課堂教學(xué)中創(chuàng)設(shè)問(wèn)題情境的重要性。比如,在《有理數(shù)的加法》一節(jié)的教學(xué)導(dǎo)入時(shí),我首先出示了一周來(lái)本班的積分統(tǒng)計(jì)表(表中的得分用正數(shù)表示,失分用負(fù)數(shù)表示,)讓學(xué)生觀察:
星期 一 二 三 四 五 六 合計(jì)
積分 +3 -2 -4 -2 +2 +4
然后提出問(wèn)題:“誰(shuí)能幫我們班算出這一周的總積分呢?”結(jié)果我發(fā)現(xiàn)大多數(shù)同學(xué)能用“抵消”的方法統(tǒng)計(jì)出這一周本班的總積分。然后我出了一道算式題:“(+3)+(-2)+(-4)+(-2)=?”發(fā)現(xiàn)學(xué)生不知道該怎樣算。當(dāng)學(xué)生產(chǎn)生這樣的認(rèn)知沖突時(shí)我便引入了本節(jié)課要學(xué)習(xí)的內(nèi)容,最后我用表中的數(shù)據(jù)分成了幾種類(lèi)型,如正數(shù)加正數(shù)、負(fù)數(shù)加負(fù)數(shù)、正數(shù)加負(fù)數(shù)等,展開(kāi)新知學(xué)習(xí),教學(xué)效果較以前有明顯改觀。
本節(jié)課成功之處在于:
(1)導(dǎo)入的情境問(wèn)題貼近學(xué)生的現(xiàn)實(shí),調(diào)動(dòng)了學(xué)生的積極性。
(2)情境問(wèn)題為后面的教學(xué)埋下了伏筆,引發(fā)了學(xué)生的認(rèn)知沖突。當(dāng)然,情境問(wèn)題的創(chuàng)設(shè)不當(dāng),會(huì)直接影響教學(xué)。比如,在《函數(shù)》一節(jié)的教學(xué)時(shí),我用游樂(lè)園中的摩天輪引入,當(dāng)我提出問(wèn)題:“同學(xué)們,當(dāng)你坐在摩天輪上,隨著時(shí)間的變化,你離開(kāi)地面的高度是如何變化的?”我發(fā)現(xiàn)學(xué)生幾乎沒(méi)有反應(yīng),只是偶爾聽(tīng)到:“摩天輪?”“很危險(xiǎn)……”本來(lái)是一個(gè)很典型的函數(shù)問(wèn)題,只因?yàn)檗r(nóng)村學(xué)生對(duì)該情境的認(rèn)識(shí)模糊,一時(shí)沒(méi)有進(jìn)入到虛擬情境中來(lái),導(dǎo)致課堂開(kāi)端出現(xiàn)“僵局”,也影響了后面的教學(xué)工作的勝利開(kāi)展。
2、教學(xué)重點(diǎn)、難點(diǎn)處的問(wèn)題設(shè)計(jì)
初中數(shù)學(xué)課堂教學(xué)中重點(diǎn)與難點(diǎn)的處理將直接影響教學(xué)效果。通過(guò)設(shè)計(jì)好的問(wèn)題串可以強(qiáng)化重點(diǎn)與突破難點(diǎn)。例如,《結(jié)識(shí)拋物線》一節(jié)的教學(xué)重點(diǎn)就是做二次函數(shù)y=x2的圖像并根據(jù)圖像認(rèn)識(shí)和理解函數(shù)的性質(zhì)。而作圖過(guò)程又是一個(gè)難點(diǎn)問(wèn)題,要從所畫(huà)的圖像中發(fā)現(xiàn)并歸納性質(zhì),首先得畫(huà)出較準(zhǔn)確的函數(shù)圖像。在學(xué)生畫(huà)圖像的過(guò)程中,我抓住學(xué)生的幾種錯(cuò)誤畫(huà)法提出了三個(gè)問(wèn)題讓學(xué)生討論交流:
(1)根據(jù)你畫(huà)的圖像,給自變量x任取一個(gè)值,函數(shù)y有唯一的值與它對(duì)應(yīng)嗎?
(2)自變量x的范圍是什么?
(3)在0
(4)部分同學(xué)經(jīng)過(guò)對(duì)x的小范圍內(nèi)的取值、描點(diǎn)與連線之后觀察到了所畫(huà)的圖像是曲線型的,但是還有部分學(xué)生就是體驗(yàn)不到這種形狀。在這種情況下,我用計(jì)算機(jī)演示,當(dāng)所描出的點(diǎn)比較密集時(shí)所連的線是曲線而不是直線段,這樣才消除了學(xué)生的一些錯(cuò)誤認(rèn)識(shí)。在隨后的觀察圖像歸納性質(zhì)的探索與交流活動(dòng)中,學(xué)生樂(lè)于探索,主動(dòng)交流,積極發(fā)表自己的想法,根據(jù)圖像歸納出了好幾條性質(zhì)。這樣,不但使重點(diǎn)得以突出、難點(diǎn)得到突破,而且發(fā)展了學(xué)生的思維。
3、例題或課堂練習(xí)中的問(wèn)題設(shè)計(jì)
例題教學(xué)具有及時(shí)鞏固知識(shí)和靈活運(yùn)用知識(shí)的雙重功能,隨堂練習(xí)是檢查學(xué)生的數(shù)學(xué)學(xué)習(xí)效果和培養(yǎng)學(xué)生思維的有效手段之一。數(shù)學(xué)課堂教學(xué)中,教師通過(guò)優(yōu)選例題,精心設(shè)計(jì)層次分明的練習(xí),能夠讓學(xué)生以積極的態(tài)度去思考并解決問(wèn)題,獲得問(wèn)題解決的成就感和快樂(lè)感。例如筆者在《反比例函數(shù)的圖像與性質(zhì)》一節(jié)的教學(xué)中設(shè)計(jì)了一道這樣的問(wèn)題:已知a(-2,y1)、b(-1,y2)、c(2,y3)三點(diǎn)都在反比例函數(shù)y=k/x(k>0)圖像上,(1)比較y1、y2、y3的大小關(guān)系。(2)若d(a,y1)、e(b,y2)、f(c,y3)三點(diǎn)也在反比例函數(shù)y=k/x(k>0)的圖像上,其中a
0時(shí),反比例函數(shù)y隨x的增大而減小,而a
y3?!睂W(xué)生b回答:“我們組用特殊值檢驗(yàn)得出y2
y1>y2。”學(xué)生c回答:“我們組根據(jù)反比例函數(shù)的圖像和性質(zhì)得到:當(dāng)k>0時(shí),在每個(gè)象限內(nèi),函數(shù)y的值隨自變量x的增大而減小,由此可得y3>y1>y2。”經(jīng)過(guò)對(duì)以上不同做法的比較和鑒別,學(xué)生對(duì)反比例函數(shù)圖像的性質(zhì)中“在每一個(gè)象限內(nèi)”這一條件有了徹底的理解。可見(jiàn),在數(shù)學(xué)課堂教學(xué)中,教師精心設(shè)計(jì)例題或練習(xí)問(wèn)題,使學(xué)生通過(guò)對(duì)問(wèn)題的解決,既鞏固了知識(shí),又培養(yǎng)了運(yùn)用知識(shí)解決實(shí)際問(wèn)題的能力,體驗(yàn)到了解決問(wèn)題后的快樂(lè)感和成就感。
4、在學(xué)習(xí)反思中的問(wèn)題設(shè)計(jì)初中學(xué)生學(xué)習(xí)數(shù)學(xué)的方法相對(duì)欠缺,學(xué)生“重結(jié)論,輕過(guò)程”的現(xiàn)象較普遍,對(duì)學(xué)習(xí)結(jié)果的反思意識(shí)淡薄,自我評(píng)價(jià)不徹底,做錯(cuò)的題目一錯(cuò)再錯(cuò)。作為教師,在平時(shí)的教學(xué)中要注重引導(dǎo),徹底分析錯(cuò)因,讓學(xué)生在錯(cuò)題中有反思的機(jī)會(huì)。例如,在一元一次方程的教學(xué)中,我發(fā)現(xiàn)學(xué)生解含有分母的方程時(shí)很容易出錯(cuò),針對(duì)學(xué)生做錯(cuò)的題目,我設(shè)計(jì)了如的表格:
通過(guò)引導(dǎo)學(xué)生對(duì)錯(cuò)因徹底分析與校正,學(xué)生明白了產(chǎn)生錯(cuò)誤的真正原因是什么,認(rèn)識(shí)到了自己的不足。然后我出了幾道解方程的練習(xí),結(jié)果發(fā)現(xiàn),學(xué)生確實(shí)重視了錯(cuò)誤,效果明顯有所好轉(zhuǎn)。
總之,在數(shù)學(xué)教學(xué)中,教學(xué)問(wèn)題的設(shè)計(jì)確實(shí)是一種學(xué)問(wèn),是一種藝術(shù)。要讓學(xué)生在實(shí)實(shí)在在的問(wèn)題情境中去親歷體驗(yàn),在對(duì)問(wèn)題的分析、探索與交流的過(guò)程中主動(dòng)思考,與人分享成果,來(lái)體驗(yàn)成功的快樂(lè),增強(qiáng)他們的自信心。
初中數(shù)學(xué)教案篇三
(一)知識(shí)教學(xué)點(diǎn)
1.使學(xué)生能利用公式解決簡(jiǎn)單的實(shí)際問(wèn)題.
2.使學(xué)生理解公式與代數(shù)式的關(guān)系.
(二)能力訓(xùn)練點(diǎn)
1.利用數(shù)學(xué)公式解決實(shí)際問(wèn)題的能力.
2.利用已知的公式推導(dǎo)新公式的能力.
(三)德育滲透點(diǎn)
數(shù)學(xué)來(lái)源于生產(chǎn)實(shí)踐,又反過(guò)來(lái)服務(wù)于生產(chǎn)實(shí)踐.
(四)美育滲透點(diǎn)
數(shù)學(xué)公式是用簡(jiǎn)潔的數(shù)學(xué)形式來(lái)闡明自然規(guī)定,解決實(shí)際問(wèn)題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡(jiǎn)潔美.
1.?dāng)?shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問(wèn)小學(xué)里學(xué)過(guò)的公式為基礎(chǔ)、突破難點(diǎn)
2.學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計(jì)算
1.重點(diǎn):利用舊公式推導(dǎo)出新的圖形的計(jì)算公式.
2.難點(diǎn):同重點(diǎn).
3.疑點(diǎn):把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.
1課時(shí)
投影儀,自制膠片。
教者投影顯示推導(dǎo)梯形面積計(jì)算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式.
(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入
師:同學(xué)們已經(jīng)知道,代數(shù)的一個(gè)重要特點(diǎn)就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們?cè)谛W(xué)里學(xué)過(guò)許多公式,請(qǐng)大家回憶一下,我們已經(jīng)學(xué)過(guò)哪些公式,教法說(shuō)明,讓學(xué)生一開(kāi)始就參與課堂教學(xué),使學(xué)生在后面利用公式計(jì)算感到不生疏.
在學(xué)生說(shuō)出幾個(gè)公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運(yùn)用公式解決實(shí)際問(wèn)題.
板書(shū):公式
師:小學(xué)里學(xué)過(guò)哪些面積公式?
板書(shū):s=ah
(出示投影1)。解釋三角形,梯形面積公式
【教法說(shuō)明】讓學(xué)生感知用割補(bǔ)法求圖形的面積。
初中數(shù)學(xué)教案篇四
學(xué)生通過(guò)上節(jié)課的學(xué)習(xí),已經(jīng)掌握了如何用沒(méi)有刻度的直尺和圓規(guī)作一條線段等于已知線段。同時(shí)在學(xué)習(xí)中學(xué)生已經(jīng)初步理解了作圖的步驟,具備了基本的作圖能力,并能簡(jiǎn)單的表達(dá)作圖過(guò)程,為本節(jié)課的學(xué)習(xí)奠定了良好的知識(shí)基礎(chǔ)。同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過(guò)程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定的合作與交流的能力。
教科書(shū)基于學(xué)生在上節(jié)課學(xué)習(xí)了如何作一條線段等于已知線段,并積累了一定的活動(dòng)經(jīng)驗(yàn),提出本節(jié)課的主要教學(xué)任務(wù)是:會(huì)用尺規(guī)作一個(gè)角等于已知角,并了解它在尺規(guī)作圖中的簡(jiǎn)單應(yīng)用。為此,本節(jié)課的教學(xué)目標(biāo)是:
1、能按照作圖語(yǔ)言來(lái)完成作圖動(dòng)作,能用尺規(guī)作一個(gè)角等于已知角,并了解它在尺規(guī)作圖中的簡(jiǎn)單應(yīng)用。
2、能利用尺規(guī)作角的和、差、倍。
3、能夠通過(guò)尺規(guī)設(shè)計(jì)并繪制簡(jiǎn)單的圖案。
4、在尺規(guī)作圖過(guò)程當(dāng)中,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),培養(yǎng)動(dòng)手能力和邏輯分析能力。
1、回顧與思考
(1)怎樣利用沒(méi)有刻度的直尺和圓規(guī)作一條線段等于已知線段?
(2)練習(xí):已知線段a,b,c,作一條線段m,使得m=a+b—c
通過(guò)回顧上節(jié)課學(xué)習(xí)的用尺規(guī)作線段,既達(dá)到了復(fù)習(xí)鞏固,反饋落實(shí)的目的,同時(shí)熟練尺規(guī)的使用,積累活動(dòng)經(jīng)驗(yàn),也為后面學(xué)習(xí)用尺規(guī)作角起到了鋪墊的作用。
2、情境引入,探索發(fā)現(xiàn)
活動(dòng)內(nèi)容:如圖2
初中數(shù)學(xué)教案篇五
1筆寡生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值;
2迸嘌學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透特殊與一般的辨證關(guān)系的思想。
重點(diǎn)和難點(diǎn):正確地求出代數(shù)式的值
1庇么數(shù)式表示:(投影)
(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;
(3)a與b的和的50%
2庇糜镅孕鶚齟數(shù)式2n+10的意義
3倍雜詰2題中的代數(shù)式2n+10,可否編成一道實(shí)際問(wèn)題呢?(在學(xué)生回答的基礎(chǔ)上,教師打投影)
某學(xué)校為了開(kāi)展體育活動(dòng),要添置一批排球,每班配2個(gè),學(xué)校另外留10個(gè),如果這個(gè)學(xué)校共有n個(gè)班,總共需多少個(gè)排球?
若學(xué)校有15個(gè)班(即n=15),則添置排球總數(shù)為多少個(gè)?若有20個(gè)班呢?
最后,教師根據(jù)學(xué)生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當(dāng)班數(shù)n取不同的數(shù)值時(shí),代數(shù)式2n+10的計(jì)算結(jié)果也不同,顯然,當(dāng)n=15時(shí),代數(shù)式的值是40;當(dāng)n=20時(shí),代數(shù)式的值是50蔽頤墻上面計(jì)算的結(jié)果40和50,稱(chēng)為代數(shù)式2n+10當(dāng)n=15和n=20時(shí)的值閉餼褪潛窘誑撾頤墻要學(xué)習(xí)研究的內(nèi)容
1庇檬值代替代數(shù)式里的字母,按代數(shù)式指明的運(yùn)算,計(jì)算后所得的結(jié)果,叫做代數(shù)式的值
2苯岷仙鮮隼題,提出如下幾個(gè)問(wèn)題:
(1)求代數(shù)式2x+10的值,必須給出什么條件?
(2)代數(shù)式的值是由什么值的確定而確定的?
當(dāng)教師引導(dǎo)學(xué)生說(shuō)出:“代數(shù)式的值是由代數(shù)式里字母的取值的確定而確定的”之后,可用圖示幫助學(xué)生加深印象
然后,教師指出:只要代數(shù)式里的字母給定一個(gè)確定的值,代數(shù)式就有唯一確定的值與它對(duì)應(yīng)
(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?
下面教師結(jié)合例題來(lái)引導(dǎo)學(xué)生歸納,概括出上述問(wèn)題的答案(教師板書(shū)例題時(shí),應(yīng)注意格式規(guī)范化)
例1當(dāng)x=7,y=4,z=0時(shí),求代數(shù)式x(2x-y+3z)的值
解:當(dāng)x=7,y=4,z=0時(shí),
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代數(shù)式中省略乘號(hào),代入后需添上乘號(hào)
例2根據(jù)下面a,b的值,求代數(shù)式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)當(dāng)a=4,b=12時(shí),
a2-=42-=16-3=13;
(2)當(dāng)a=1,b=1時(shí),
a2-=-=
注意(1)如果字母取值是分?jǐn)?shù),作乘方運(yùn)算時(shí)要加括號(hào);
(2)注意書(shū)寫(xiě)格式,“當(dāng)……時(shí)”的字樣不要丟;
(3)代數(shù)式里的字母可取不同的值,但是所取的值不應(yīng)當(dāng)使代數(shù)式或代數(shù)式所表示的數(shù)量關(guān)系失去實(shí)際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個(gè)數(shù),n不能取分?jǐn)?shù)最后,請(qǐng)學(xué)生總結(jié)出求代數(shù)值的步驟:①代入數(shù)值②計(jì)算結(jié)果
1(1)當(dāng)x=2時(shí),求代數(shù)式x2-1的值;
(2)當(dāng)x=,y=時(shí),求代數(shù)式x(x-y)的值
2鋇盿=,b=時(shí),求下列代數(shù)式的值:
(1)(a+b)2;(2)(a-b)2
3鋇眡=5,y=3時(shí),求代數(shù)式的值
答案:1.(1)3;(2);2.(1);(2);3.。
首先,請(qǐng)學(xué)生回答下面問(wèn)題:
1北窘誑窩習(xí)了哪些內(nèi)容?
2鼻蟠數(shù)式的值應(yīng)分哪幾步?
3痹“代入”這一步應(yīng)注意什么”
其次,結(jié)合學(xué)生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母按照代數(shù)式的運(yùn)算順序,直接計(jì)算后所得的結(jié)果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的。
當(dāng)a=2,b=1,c=3時(shí),求下列代數(shù)式的值:(1)c-(c-a)(c-b);
今天的內(nèi)容就介紹到這里了。
初中數(shù)學(xué)教案篇六
《余角和補(bǔ)角》第2課時(shí)教案
教學(xué)目標(biāo):
知識(shí)與能力
能正確運(yùn)用角度表示方向,并能熟練運(yùn)算和角有關(guān)的問(wèn)題。
過(guò)程與方法
能通過(guò)實(shí)際操作,體會(huì)方位角在是實(shí)際生活中的應(yīng)用,發(fā)展抽象思維。
情感、態(tài)度、價(jià)值觀
能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的好奇心和求知欲。
教學(xué)重點(diǎn):方位角的表示方法。
教學(xué)難點(diǎn):方位角的準(zhǔn)確表示。
教學(xué)準(zhǔn)備:預(yù)習(xí)書(shū)上有關(guān)內(nèi)容
預(yù)習(xí)導(dǎo)學(xué):
如圖所示,請(qǐng)說(shuō)出四條射線所表示的方位角?
教學(xué)過(guò)程;
一、創(chuàng)設(shè)情景,談話導(dǎo)入
在現(xiàn)實(shí)生活中,有一種角經(jīng)常用于航空、航海,測(cè)繪中領(lǐng)航員常用地圖和羅盤(pán)進(jìn)行這種角的測(cè)定,這就是方位角,方位角應(yīng)用比較廣泛,什么是方位角呢?
二、精講點(diǎn)拔,質(zhì)疑問(wèn)難
方位角其實(shí)就是表示方向的角,這種角以正北,正南方向?yàn)榛鶞?zhǔn)描述物體的方向,如“北偏東30°”,“南偏西40°”等,方位角不能以正東,正西為基準(zhǔn),如不能說(shuō)成“東偏北60°,西偏南50°”等,但有時(shí)如北偏東45°時(shí),我們可以說(shuō)成東北方向。
三、課堂活動(dòng),強(qiáng)化訓(xùn)練
例1如圖:指出圖中射線oa、ob所表示的方向。
(學(xué)生個(gè)別回答,學(xué)生點(diǎn)評(píng))
例2若燈塔位于船的北偏東30°,那么船在燈塔的什么方位?
(小組討論,個(gè)別回答,教師總結(jié))
例3如圖,貨輪o在航行過(guò)程中發(fā)現(xiàn)燈塔a在它的南偏東60°的方向上,同時(shí)在它北偏東60°,南偏西10°,西北方向上又分別發(fā)現(xiàn)了客輪b,貨輪c和海島d,仿照表示燈塔方位的方法,畫(huà)出表示客輪b、貨輪c、海島d方向的射線。
(教師分析,一學(xué)生上黑板,學(xué)生點(diǎn)評(píng))
四、延伸拓展,鞏固內(nèi)化
例4某哨兵上午8時(shí)測(cè)得一艘船的位置在哨所的。南偏西30°,距哨所10km的地方,上午10時(shí),測(cè)得該船在哨所的北偏東60°,距哨所8km的地方。
(1)請(qǐng)按比例尺1:200000畫(huà)出圖形。
(獨(dú)立完成,一同學(xué)上黑板,學(xué)生點(diǎn)評(píng))
(2)通過(guò)測(cè)量計(jì)算,確定船航行的方向和進(jìn)度。
(小組討論,得出結(jié)論,代表發(fā)言)
五、布置作業(yè)、當(dāng)堂反饋
練習(xí):請(qǐng)使用量角器、刻度尺畫(huà)出下列點(diǎn)的位置。
(1)點(diǎn)a在點(diǎn)o的北偏東30°的方向上,離點(diǎn)o的距離為3cm。
(2)點(diǎn)b在點(diǎn)o的南偏西60°的方向上,離點(diǎn)o的距離為4cm。
(3)點(diǎn)c在點(diǎn)o的西北方向上,同時(shí)在點(diǎn)b的正北方向上。
作業(yè):書(shū)p1407、9