又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當(dāng)前位置:網(wǎng)站首頁 >> 作文 >> 2023年高中數(shù)學(xué)必修一教案全套 高中數(shù)學(xué)必修教案(大全12篇)

2023年高中數(shù)學(xué)必修一教案全套 高中數(shù)學(xué)必修教案(大全12篇)

格式:DOC 上傳日期:2023-09-27 12:31:10
2023年高中數(shù)學(xué)必修一教案全套 高中數(shù)學(xué)必修教案(大全12篇)
時間:2023-09-27 12:31:10     小編:琉璃

作為一位無私奉獻(xiàn)的人民教師,總歸要編寫教案,借助教案可以有效提升自己的教學(xué)能力。那么我們該如何寫一篇較為完美的教案呢?以下是小編收集整理的教案范文,僅供參考,希望能夠幫助到大家。

高中數(shù)學(xué)必修一教案全套篇一

本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實際問題。

數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。

本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全”等。

教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。

加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。

本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!边@樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認(rèn)識,同時使新知識建立在已有知識的堅實基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。

《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,

位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。

在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的'關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實際問題中去,對所學(xué)數(shù)學(xué)知識的實際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實際問題。

1.1正弦定理和余弦定理(約3課時)

1.2應(yīng)用舉例(約4課時)

1.3實習(xí)作業(yè)(約1課時)

1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個定理解決有關(guān)的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應(yīng)該鼓勵學(xué)生提出自己的解決辦法,并對于不同的方法進(jìn)行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學(xué)生設(shè)計應(yīng)用的程序,得到在實際中可以直接應(yīng)用的算法。

2.適當(dāng)安排一些實習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達(dá)實習(xí)過程和實習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實踐能力。教師要注意對于學(xué)生實習(xí)作業(yè)的指導(dǎo),包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。

高中數(shù)學(xué)必修一教案全套篇二

了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

(2)一元二次不等式

會從實際情境中抽象出一元二次不等式模型.

通過函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.

(3)二元一次不等式組與簡單線性規(guī)劃問題

會從實際情境中抽象出二元一次不等式組.

了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.

會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

(4)基本不等式:

了解基本不等式的證明過程.

高中數(shù)學(xué)必修一教案全套篇三

(1)掌握與()型的絕對值不等式的解法.

(2)掌握與()型的絕對值不等式的解法.

(3)通過用數(shù)軸來表示含絕對值不等式的解集,培養(yǎng)學(xué)生數(shù)形結(jié)合的能力;

教學(xué)重點:型的不等式的解法;

教學(xué)難點:利用絕對值的意義分析、解決問題.

教學(xué)過程設(shè)計

教師活動

學(xué)生活動

設(shè)計意圖

一、導(dǎo)入新課

【提問】正數(shù)的絕對值什么?負(fù)數(shù)的絕對值是什么?零的絕對值是什么?舉例說明?

【概括】

口答

絕對值的概念是解與()型絕對值不等值的概念,為解這種類型的絕對值不等式做好鋪墊.

二、新課

【提問】如何解絕對值方程.

【質(zhì)疑】的解集有幾部分?為什么也是它的解集?

【練習(xí)】解下列不等式:

(1);

(2)

【設(shè)問】如果在中的,也就是怎樣解?

【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.

所以,原不等式的解集是

【設(shè)問】如果中的是,也就是怎樣解?

【點撥】可以把看成一個整體,也就是把看成,按照的解法來解.

,或,

由得

由得

所以,原不等式的解集是

口答.畫出數(shù)軸后在數(shù)軸上表示絕對值等于2的數(shù).

畫出數(shù)軸,思考答案

不等式的解集表示為

畫出數(shù)軸

思考答案

不等式的解集為

或表示為,或

筆答

(1)

(2),或

筆答

筆答

根據(jù)絕對值的意義自然引出絕對值方程()的解法.

由淺入深,循序漸進(jìn),在型絕對值方程的基礎(chǔ)上引出()型絕對值方程的解法.

針對解()絕對值不等式學(xué)生常出現(xiàn)的情況,運用數(shù)軸質(zhì)疑、解惑.

落實會正確解出與()絕對值不等式的教學(xué)目標(biāo).

在將看成一個整體的關(guān)鍵處點撥、啟發(fā),使學(xué)生主動地進(jìn)行練習(xí).

繼續(xù)強(qiáng)化將看成一個整體繼續(xù)強(qiáng)化解不等式時不要犯丟掉這部分解的錯誤.

三、課堂練習(xí)

解下列不等式:

(1);

(2)

筆答

(1);

(2)

檢查教學(xué)目標(biāo)落實情況.

四、小結(jié)

的解集是;的解集是

解絕對值不等式注意不要丟掉這部分解集.

五、作業(yè)

1.閱讀課本含絕對值不等式解法.

2.習(xí)題2、3、4

課堂教學(xué)設(shè)計說明

1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).

2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達(dá)到提高學(xué)生解題能力的目的.

3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進(jìn)行突破,并在練習(xí)中糾正這個錯誤,以提高學(xué)生的運算能力.

高中數(shù)學(xué)必修一教案全套篇四

(一)課標(biāo)要求

本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實際問題。

(二)編寫意圖與特色

1.?dāng)?shù)學(xué)思想方法的重要性

數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識的理解和掌握。

本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問題、思考解決問題的策略等方面對學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應(yīng)邊及其所夾的角相等,那么這兩個三角形全”等。

教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O(shè)置這些問題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。

2.注意加強(qiáng)前后知識的聯(lián)系

加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書成為一個有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對于數(shù)學(xué)知識的學(xué)習(xí)和鞏固。

本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯(lián)系。教科書在引入正弦定理內(nèi)容時,讓學(xué)生從已有的幾何知識出發(fā),提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關(guān)系.我們是否能得到這個邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的`問題?!边@樣,從聯(lián)系的觀點,從新的角度看過去的問題,使學(xué)生對于過去的知識有了新的認(rèn)識,同時使新知識建立在已有知識的堅實基礎(chǔ)上,形成良好的知識結(jié)構(gòu)。

《課程標(biāo)準(zhǔn)》和教科書把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,

位置相對靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線和圓的方程等與本章知識聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進(jìn)行討論,方法不夠簡潔,教科書則用了向量的方法,發(fā)揮了向量方法在解決問題中的威力。

在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個定理之間的關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

3.重視加強(qiáng)意識和數(shù)學(xué)實踐能力

學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個問題是,學(xué)生應(yīng)用數(shù)學(xué)的意識不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實際問題抽象成數(shù)學(xué)問題,不能把所學(xué)的數(shù)學(xué)知識應(yīng)用到實際問題中去,對所學(xué)數(shù)學(xué)知識的實際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見數(shù)學(xué)問題解法的能力較強(qiáng),但當(dāng)面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發(fā)現(xiàn)問題、解決問題的科學(xué)思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識應(yīng)用于實際問題。

(三)教學(xué)內(nèi)容及課時安排建議

1.1正弦定理和余弦定理(約3課時)

1.2應(yīng)用舉例(約4課時)

1.3實習(xí)作業(yè)(約1課時)

(四)評價建議

1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實際,啟發(fā)學(xué)生不斷提出問題,研究問題。在對于正弦定理和余弦定理的證明的探究過程中,應(yīng)該因勢利導(dǎo),根據(jù)具體教學(xué)過程中學(xué)生思考問題的方向來啟發(fā)學(xué)生得到自己對于定理的證明。如對于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個定理解決有關(guān)的解三角形和測量問題的過程中,一個問題也常常有多種不同的解決方案,應(yīng)該鼓勵學(xué)生提出自己的解決辦法,并對于不同的方法進(jìn)行必要的分析和比較。對于一些常見的測量問題甚至可以鼓勵學(xué)生設(shè)計應(yīng)用的程序,得到在實際中可以直接應(yīng)用的算法。

2.適當(dāng)安排一些實習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,提高學(xué)生分析問題的解決實際問題的能力、動手操作的能力以及用數(shù)學(xué)語言表達(dá)實習(xí)過程和實習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識和數(shù)學(xué)實踐能力。教師要注意對于學(xué)生實習(xí)作業(yè)的指導(dǎo),包括對于實際測量問題的選擇,及時糾正實際操作中的錯誤,解決測量中出現(xiàn)的一些問題。

高中數(shù)學(xué)必修一教案全套篇五

(一) 知識定位及復(fù)習(xí)策略

集合這部分的主要內(nèi)容是集合的概念、表示方法和集合之間的關(guān)系和運算??v觀近幾年高考題,集合的考查以選擇題、填空題為主要題型。集合的概念和基本運算是本章的重點內(nèi)容,也是高考的必考內(nèi)容。 復(fù)習(xí)中首先要把握基礎(chǔ)知識,深刻理解本章的基礎(chǔ)知識點,重點掌握集合的概念和運算。 本章常用的數(shù)學(xué)思想方法主要有:數(shù)形結(jié)合的思想,如常借助于維恩圖、數(shù)軸解決問題;分類討論的思想,如一元二次方程根的討論、集合的包含關(guān)系等。復(fù)習(xí)時要重視對基本思想方法的滲透,逐步培養(yǎng)用數(shù)學(xué)思想方法來分析問題、解決問題的能力。

(二) 規(guī)律方法總結(jié)

1、集合中元素的互異性是集合概念的重點考查內(nèi)容。一般給出兩個集合,并告知兩個集合之間的關(guān)系,求集合中某個參數(shù)的范圍或值的時候,要特別驗證是否符合元素之間互異性。 2、考查集合的運算和包含關(guān)系,解題中常用到分類討論思想,分類時注意不重不漏,尤其注意討論集合為空集的情況。 3、新定義的集合運算問題是以已知的集合或運算為背景,引出新的集合概念或運算,仔細(xì)審題,弄清新定義的意義才是關(guān)鍵。

基本初等函數(shù)

(一) 知識定位及復(fù)習(xí)策略

基本初等函數(shù)的內(nèi)容是函數(shù)的基礎(chǔ),也是研究其他較復(fù)雜函數(shù)的轉(zhuǎn)化目標(biāo),掌握基本初等函數(shù)的圖象和性質(zhì)是學(xué)習(xí)函數(shù)知識的必要的一步。與指數(shù)函數(shù)、對數(shù)函數(shù)有關(guān)的試題,大多以考查基本初等函數(shù)的性質(zhì)為依托,結(jié)合運算推理來解題。所以這部分內(nèi)容更注重通過函數(shù)圖象讀取各種信息,從而研究函數(shù)的性質(zhì),熟練掌握函數(shù)圖象的各種變換方式,培養(yǎng)運用數(shù)形結(jié)合思想來解題的能力。

(二) 規(guī)律方法總結(jié)

1、指數(shù)函數(shù)多與一次函數(shù)、二次函數(shù)、反比例函數(shù)等知識結(jié)合考查綜合應(yīng)用知識解決函數(shù)問題的能力。指數(shù)方程的求解常利用換元法轉(zhuǎn)化為一元二次方程求解。由指數(shù)函數(shù)和二次函數(shù)、反比例函數(shù)結(jié)合成的函數(shù)的單調(diào)性的判定注意底數(shù)與1的關(guān)系的判定。

2、解對數(shù)方程(或不等式)就是將對數(shù)方程(或不等式)化為有理方程(或不等式)。要注意轉(zhuǎn)化必須是等價的,特別要考慮到對數(shù)函數(shù)定義域。

高中數(shù)學(xué)必修一教案全套篇六

各位老師大家好!

我說課的內(nèi)容是人教版a版必修2第三章第一節(jié)直線的傾斜角與斜率第一課時。

(一)教材分析

本節(jié)課選自必修2第三章(解析幾何的第一章)第一節(jié)直線的傾斜角與斜率第一課時,直線的傾斜角和斜率解析幾何的重要概念;是刻畫直線傾斜程度的幾何要素與代數(shù)表示;學(xué)生在原有的對直線的有關(guān)性質(zhì)及平面向量的相關(guān)知識理解的基礎(chǔ)上,重新以解析法的方式來研究直線相關(guān)性質(zhì),而本節(jié)課直線的傾斜角與斜率,是直線的重要的幾何性質(zhì),是研究直線的方程形式,直線的位置關(guān)系等的思維的起點;另外,本節(jié)課也初步向?qū)W生滲透解析幾何的基本思想和基本方法。因此,本課有著開啟全章、滲透方法,承前啟后的作用。

(二)學(xué)情分析

本節(jié)課的教學(xué)對象是高二學(xué)生,這個年齡段的學(xué)生天性活潑,求知欲強(qiáng),并且學(xué)習(xí)主動,在知識儲備上知道兩點確定一條直線,知道點與坐標(biāo)的關(guān)系,實現(xiàn)了最簡單的形與數(shù)的轉(zhuǎn)化;了解刻畫傾斜程度可用角和正切值;具備了一定的數(shù)形結(jié)合的能力和分類討論的思想。但根據(jù)學(xué)生的認(rèn)知規(guī)律,還沒有形成自覺地把數(shù)學(xué)問題抽象化的能力。所以在教學(xué)設(shè)計時需從學(xué)生的最近發(fā)展區(qū)進(jìn)行探究學(xué)習(xí),盡量讓不同層次的學(xué)生都經(jīng)歷概念的形成、鞏固和應(yīng)用過程。

(三)教學(xué)目標(biāo)

1.理解直線的傾斜角和斜率的概念,理解直線的傾斜角的唯一性和斜率的存在性;

2.掌握過兩點的直線斜率的計算公式;

3.通過經(jīng)歷從具體實例抽象出數(shù)學(xué)概念的過程,培養(yǎng)學(xué)生觀察、分析和概括能力;

生嚴(yán)謹(jǐn)求簡的數(shù)學(xué)精神。

重點:斜率的概念,用代數(shù)方法刻畫直線斜率的過程,過兩點的直線斜率的計算公式。

難點:直線的傾斜角與斜率的概念的形成,斜率公式的構(gòu)建。

(四)教法和學(xué)法

課堂教學(xué)應(yīng)有利于學(xué)生的數(shù)學(xué)素質(zhì)的形成與發(fā)展,即在課堂教學(xué)過程中,創(chuàng)設(shè)問題的情景,激發(fā)學(xué)生主動的發(fā)現(xiàn)問題解決問題,充分調(diào)動學(xué)生學(xué)習(xí)的主動性、積極性;有效的滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個性思維品質(zhì),這是本節(jié)課的教學(xué)原則。根據(jù)這樣的教學(xué)原則,考慮到學(xué)生首次接觸解析幾何的內(nèi)容及研究方法,所以我采用設(shè)置問題串的形式,啟發(fā)引導(dǎo)學(xué)生類比、聯(lián)想,產(chǎn)生知識遷移;通過幾何畫板演示實驗、探索交流相結(jié)合的教學(xué)方法激發(fā)學(xué)生觀察、實驗,體驗知識的形成過程;由此循序漸進(jìn),使學(xué)生很自然達(dá)到本節(jié)課的學(xué)習(xí)目標(biāo)。

(五)教學(xué)過程

環(huán)節(jié)1.指明研究方向(3min)

簡介17世紀(jì)法國數(shù)學(xué)家笛卡爾和費馬的數(shù)學(xué)史。

高中數(shù)學(xué)必修一教案全套篇七

教學(xué)目標(biāo)

1、數(shù)學(xué)知識:掌握等比數(shù)列的概念,通項公式,及其有關(guān)性質(zhì);

2、數(shù)學(xué)能力:通過等差數(shù)列和等比數(shù)列的類比學(xué)習(xí),培養(yǎng)學(xué)生類比歸納的能力;

歸納——猜想——證明的數(shù)學(xué)研究方法;

3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類討論,函數(shù)的數(shù)學(xué)思想。

教學(xué)重難點

重點:等比數(shù)列的概念及其通項公式,如何通過類比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;

難點:等比數(shù)列的性質(zhì)的探索過程。

教學(xué)過程

教學(xué)過程:

1、 問題引入:

前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。

問題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個等差數(shù)列?

(學(xué)生口述,并投影):如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。

要想確定一個等差數(shù)列,只要知道它的首項a1和公差d。

已知等差數(shù)列的首項a1和d,那么等差數(shù)列的通項公式為:(板書)an=a1+(n-1)d。

師:事實上,等差數(shù)列的關(guān)鍵是一個“差”字,即如果一個數(shù)列,從第2項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列。

(第一次類比)類似的,我們提出這樣一個問題。

問題2:如果一個數(shù)列,從第2項起,每一項與它的前一項的……等于同一個常數(shù),那么這個數(shù)列叫做……數(shù)列。

(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數(shù)列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數(shù)的話,這個數(shù)列是一個各項重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個常數(shù)的情況。而這個數(shù)列就是我們今天要研究的等比數(shù)列了。)

2、新課:

1)等比數(shù)列的定義:如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),那么這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做公比。

師生共同簡要回顧等差數(shù)列的通項公式推導(dǎo)的方法:累加法和迭代法。

公式的推導(dǎo):(師生共同完成)

若設(shè)等比數(shù)列的公比為q和首項為a1,則有:

方法一:(累乘法)

3)等比數(shù)列的性質(zhì):

下面我們一起來研究一下等比數(shù)列的性質(zhì)

通過上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過類比得到等比數(shù)列的性質(zhì)。

問題4:如果{an}是一個等差數(shù)列,它有哪些性質(zhì)?

(根據(jù)學(xué)生實際情況,可引導(dǎo)學(xué)生通過具體例子,尋找規(guī)律,如:

3、例題鞏固:

例1、一個等比數(shù)列的第二項是2,第三項與第四項的和是12,求它的第八項的值。

答案:1458或128。

例2、正項等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3 …a20 =_ 10 ____.

(本題為開放題,沒有唯一的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數(shù)列中的第2k-1項。關(guān)鍵是對通項公式的理解)

1、 小結(jié):

今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項公式、以及它的性質(zhì),通過今天的學(xué)習(xí)

我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識,更重要的是我們學(xué)會了由類比——猜想——證明的科學(xué)思維的過程。

2、 作業(yè):

p129:1,2,3

教學(xué)設(shè)計說明:

1、 教學(xué)目標(biāo)和重難點:首先作為等比數(shù)列的第一節(jié)課,對于等比數(shù)列的概念、通項公式及其性質(zhì)是學(xué)生接下來學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實的;其次,數(shù)學(xué)教學(xué)除了要傳授知識,更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來,通過等比數(shù)列和等差數(shù)列的類比學(xué)習(xí),對培養(yǎng)學(xué)生類比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點。

2、 教學(xué)設(shè)計過程:本節(jié)課主要從以下幾個方面展開:

1) 通過復(fù)習(xí)等差數(shù)列的定義,類比得出等比數(shù)列的定義;

2) 等比數(shù)列的通項公式的推導(dǎo);

3) 等比數(shù)列的性質(zhì);

有意識的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項公式的探求思路,一方面使學(xué)生回顧舊

知識,另一方面使學(xué)生通過聯(lián)想,為類比地探索等比數(shù)列的定義、通項公式奠定基礎(chǔ)。

在類比得到等比數(shù)列的定義之后,再對幾個具體的數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識規(guī)律,使學(xué)生體會觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識的能力。

在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項公式又是一個重點。這里通過問題3的設(shè)計,使學(xué)生產(chǎn)生不得不考慮通項公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動完成對知識的接受。

通過等差數(shù)列和等比數(shù)列的通項公式的比較使學(xué)生初步體會到等差和等比的相似性,為下面類比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。

等比性質(zhì)的研究是本節(jié)課的高潮,通過類比

關(guān)于例題設(shè)計:重知識的應(yīng)用,具有開放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。

高中數(shù)學(xué)必修一教案全套篇八

1、知識與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。

2、過程與方法:通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。

3、情感態(tài)度與價值觀:提高學(xué)生空間想象力,體會三視圖的作用。

二、教學(xué)重點:畫出簡單幾何體、簡單組合體的三視圖;

難點:識別三視圖所表示的空間幾何體。

三、學(xué)法指導(dǎo):觀察、動手實踐、討論、類比。

四、教學(xué)過程

(一)創(chuàng)設(shè)情景,揭開課題

展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。

(二)講授新課

1、中心投影與平行投影:

中心投影:光由一點向外散射形成的。投影;

平行投影:在一束平行光線照射下形成的投影。

正投影:在平行投影中,投影線正對著投影面。

2、三視圖:

正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

長對正:正視圖與俯視圖的長相等,且相互對正;

高平齊:正視圖與側(cè)視圖的高度相等,且相互對齊;

寬相等:俯視圖與側(cè)視圖的寬度相等。

3、畫長方體的三視圖:

正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

4、畫圓柱、圓錐的三視圖:

5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

(三)鞏固練習(xí)

課本p15練習(xí)1、2;p20習(xí)題1.2[a組]2。

(四)歸納整理

請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

(五)布置作業(yè)

課本p20習(xí)題1.2[a組]1。

高中數(shù)學(xué)必修一教案全套篇九

教學(xué)目標(biāo)

掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.

教學(xué)重難點

掌握等差數(shù)列與等比數(shù)列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,

教學(xué)過程

等比數(shù)列性質(zhì)請同學(xué)們類比得出.

【方法規(guī)律】

1、通項公式與前n項和公式聯(lián)系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數(shù)學(xué)思想和方法.

2、判斷一個數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個實數(shù)

a,b,c成等差(比)數(shù)列時,常用(注:若為等比數(shù)列,則a,b,c均不為0)

3、在求等差數(shù)列前n項和的最大(小)值時,常用函數(shù)的思想和方法加以解決.

【示范舉例】

例1:(1)設(shè)等差數(shù)列的前n項和為30,前2n項和為100,則前3n項和為 .

(2)一個等比數(shù)列的前三項之和為26,前六項之和為728,則a1= ,q= .

例2:四數(shù)中前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,首末兩項之和為21,中間兩項之和為18,求此四個數(shù).

例3:項數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項之和為44,偶數(shù)項之和為33,求該數(shù)列的中間項.

高中數(shù)學(xué)必修一教案全套篇十

棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

棱柱的性質(zhì)

(1)側(cè)棱都相等,側(cè)面是平行四邊形

(2)兩個底面與平行于底面的截面是全等的多邊形

(3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形

2、棱錐

棱錐的性質(zhì):

(1)側(cè)棱交于一點。側(cè)面都是三角形

3、正棱錐

正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質(zhì):

(1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(2)多個特殊的直角三角形

a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高中數(shù)學(xué)必修一教案全套篇十一

教學(xué)目標(biāo)

解三角形及應(yīng)用舉例

教學(xué)重難點

解三角形及應(yīng)用舉例

教學(xué)過程

一?;A(chǔ)知識精講

掌握三角形有關(guān)的定理

利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);

利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題。

二。問題討論

思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論。

思維點撥::三角形中的三角變換,應(yīng)靈活運用正、余弦定理。在求值時,要利用三角函數(shù)的有關(guān)性質(zhì)。

例6:在某海濱城市附近海面有一臺風(fēng),據(jù)檢測,當(dāng)前臺

風(fēng)中心位于城市o(如圖)的東偏南方向

300km的海面p處,并以20km/h的速度向西偏北的

方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,

并以10km/h的速度不斷增加,問幾小時后該城市開始受到

臺風(fēng)的侵襲。

一。小結(jié):

1、利用正弦定理,可以解決以下兩類問題:

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進(jìn)一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類問題:

(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

3、邊角互化是解三角形問題常用的手段。

三。作業(yè):p80闖關(guān)訓(xùn)練

高中數(shù)學(xué)必修一教案全套篇十二

學(xué)生全面認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。

2。通過實際問題的研究,促進(jìn)學(xué)生分析問題、解決問題以及數(shù)學(xué)建模能力的提高。

教學(xué)重點:

如何建立實際問題的目標(biāo)函數(shù)是教學(xué)的重點與難點。

教學(xué)過程:

一、問題情境

問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?

問題3做一個容積為256l的方底無蓋水箱,它的高為多少時材料最???

二、新課引入

導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題。

1。幾何方面的應(yīng)用(面積和體積等的最值)。

2。物理方面的應(yīng)用(功和功率等最值)。

3。經(jīng)濟(jì)學(xué)方面的應(yīng)用(利潤方面最值)。

三、知識建構(gòu)

說明1解應(yīng)用題一般有四個要點步驟:設(shè)——列——解——答。

說明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個極

值及端點值比較即可。

例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應(yīng)怎樣選取,才

能使所用的材料最???

說明1這種在定義域內(nèi)僅有一個極值的函數(shù)稱單峰函數(shù)。

說明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對一般的求法加以簡化,其步驟為:

s1列:列出函數(shù)關(guān)系式。

s2求:求函數(shù)的導(dǎo)數(shù)。

s3述:說明函數(shù)在定義域內(nèi)僅有一個極大(小)值,從而斷定為函數(shù)的最大(小)值,必要時作答。

例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動勢為。外電阻為

多大時,才能使電功率最大?最大電功率是多少?

說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應(yīng)的自變量必須有解。

例4強(qiáng)度分別為a,b的兩個光源a,b,它們間的距離為d,試問:在連接這兩個光源的線段ab上,何處照度最???試就a=8,b=1,d=3時回答上述問題(照度與光的強(qiáng)度成正比,與光源的距離的平方成反比)。

例5在經(jīng)濟(jì)學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。

(1)設(shè),生產(chǎn)多少單位產(chǎn)品時,邊際成本最低?

(2)設(shè),產(chǎn)品的單價,怎樣的定價可使利潤最大?

四、課堂練習(xí)

1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。

2。在半徑為r的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽?時,它的面積最大。

4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面abcd的面積為定值s時,使得濕周l=ab+bc+cd最小,這樣可使水流阻力小,滲透少,求此時的高h(yuǎn)和下底邊長b。

五、回顧反思

(1)解有關(guān)函數(shù)最大值、最小值的實際問題,需要分析問題中各個變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實際意義。

(2)根據(jù)問題的實際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。

(3)相當(dāng)多有關(guān)最值的實際問題用導(dǎo)數(shù)方法解決較簡單。

六、課外作業(yè)

課本第38頁第1,2,3,4題。

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
你可能感興趣的文章
a.付費復(fù)制
付費獲得該文章復(fù)制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復(fù)制
付費后30天內(nèi)不限量復(fù)制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服