在日常的學(xué)習(xí)、工作、生活中,肯定對(duì)各類范文都很熟悉吧。范文書寫有哪些要求呢?我們?cè)鯓硬拍軐懞靡黄段哪??這里我整理了一些優(yōu)秀的范文,希望對(duì)大家有所幫助,下面我們就來了解一下吧。
湖北省中考數(shù)學(xué)試題 湖北省初中數(shù)學(xué)中考試卷篇一
性質(zhì):是一個(gè)非負(fù)數(shù);
2二次根式的乘除:
3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并.
4海倫-秦九韶公式:,s是的面積,p為.
1:等號(hào)兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的次是2的方程.
2配方法:將方程的一邊配成完全平方式,然后兩邊開方;
因式分解法:左邊是兩個(gè)因式的乘積,右邊為零.
3一元二次方程在實(shí)際問題中的應(yīng)用
4韋達(dá)定理:設(shè)是方程的兩個(gè)根,那么有
1:一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動(dòng)一個(gè)角度的圖形變換
性質(zhì):對(duì)應(yīng)點(diǎn)到中心的距離相等;
對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角
旋轉(zhuǎn)前后的圖形全等.
2中心對(duì)稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對(duì)稱;
中心對(duì)稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對(duì)稱圖形;
3關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直于弦的直徑
圓是圖形,任何一條直徑所在的直線都是它的對(duì)稱軸;
垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條弧;
平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧.
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等.
4圓周角
在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;
半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑.
5點(diǎn)和圓的位置關(guān)系
點(diǎn)在圓外d>r
點(diǎn)在圓上d=r
點(diǎn)在圓內(nèi)dr+r
外切d=r+r
相交r-r
湖北省中考數(shù)學(xué)試題 湖北省初中數(shù)學(xué)中考試卷篇二
拋物線頂點(diǎn)坐標(biāo)公式
y=ax2+bx+c(a=?0)的頂點(diǎn)坐標(biāo)公式是(-b/2a,(4ac-b2)/4a)
y=ax2+bx的頂點(diǎn)坐標(biāo)是(-b/2a,-b2/4a)
相關(guān)結(jié)論
過拋物線y^2=2px(p>0)焦點(diǎn)f作傾斜角為θ的直線l,l與拋物線相交于a(x1,y1),b(x2,y2),有
①x1_x2=p^2/4,y1_y2=—p^2,要在直線過焦點(diǎn)時(shí)才能成立;
②焦點(diǎn)弦長(zhǎng):|ab|=x1+x2+p=2p/[(sinθ)^2];
③(1/|fa|)+(1/|fb|)=2/p;
④若oa垂直ob則ab過定點(diǎn)m(2p,0);
⑤焦半徑:|fp|=x+p/2(拋物線上一點(diǎn)p到焦點(diǎn)f距離等于到準(zhǔn)線l距離);
⑥弦長(zhǎng)公式:ab=√(1+k^2)_│x2-x1│;
⑦△=b^2-4ac;
⑧由拋物線焦點(diǎn)到其切線的垂線距離,是焦點(diǎn)到切點(diǎn)的距離,與到頂點(diǎn)距離的比例中項(xiàng);
⑨標(biāo)準(zhǔn)形式的拋物線在x0,y0點(diǎn)的切線就是:yy0=p(x+x0)。
⑴△=b^2-4ac>0有兩個(gè)實(shí)數(shù)根;
⑵△=b^2-4ac=0有兩個(gè)一樣的實(shí)數(shù)根;
⑶△=b^2-4ac<0沒實(shí)數(shù)根。
湖北省中考數(shù)學(xué)試題 湖北省初中數(shù)學(xué)中考試卷篇三
實(shí)數(shù)
一、重要概念1.數(shù)的分類及概念數(shù)系表:
說明:“分類”的原則:1)相稱(不重、不漏)2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù):①定義及表示法
②性質(zhì):a.a≠1/a(a≠±1);b.1/a中,a≠0;c.01時(shí),1/a<1;d.積為1。
4.相反數(shù):①定義及表示法
②性質(zhì):a.a≠0時(shí),a≠-a;b.a與-a在數(shù)軸上的位置;c.和為0,商為-1。
5.數(shù)軸:①定義(“三要素”)
②作用:a.直觀地比較實(shí)數(shù)的大小;b.明確體現(xiàn)絕對(duì)值意義;c.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
②│a│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。
二、實(shí)數(shù)的運(yùn)算
1.運(yùn)算法則(加、減、乘、除、乘方、開方)
2.運(yùn)算定律(五個(gè)—加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]
分配律)
3.運(yùn)算順序:a.高級(jí)運(yùn)算到低級(jí)運(yùn)算;b.(同級(jí)運(yùn)算)從“左”
到“右”(如5÷×5);c.(有括號(hào)時(shí))由“小”到“中”到“大”。
三、應(yīng)用舉例(略)
附:典型例題
1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號(hào)。