在日常學(xué)習(xí)、工作或生活中,大家總少不了接觸作文或者范文吧,通過(guò)文章可以把我們那些零零散散的思想,聚集在一塊。范文書(shū)寫(xiě)有哪些要求呢?我們?cè)鯓硬拍軐?xiě)好一篇范文呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來(lái)看看吧。
等差數(shù)列教學(xué)設(shè)計(jì) 等差數(shù)列教學(xué)設(shè)計(jì)人教版篇一
1、知識(shí)與技能
(1)初步掌握一些特殊數(shù)列求其前n項(xiàng)和的常用方法.(2)通過(guò)把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和問(wèn)題,培養(yǎng)學(xué)生觀察、分析問(wèn)題的能力,轉(zhuǎn)化的數(shù)學(xué)思想以及數(shù)學(xué)運(yùn)算能力。
2、過(guò)程與方法
培養(yǎng)學(xué)生分析解決問(wèn)題的能力,歸納總結(jié)能力,以及數(shù)學(xué)運(yùn)算的能力。
3、情感,態(tài)度,價(jià)值觀
通過(guò)教學(xué),讓學(xué)生認(rèn)識(shí)到事物是普遍聯(lián)系,發(fā)展變化的。
二、教學(xué)重點(diǎn):
把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和
三、教學(xué)難點(diǎn):
尋找適當(dāng)?shù)淖儞Q方法,達(dá)到化歸的目的四、教學(xué)過(guò)程設(shè)計(jì)
復(fù)習(xí)引入:
(1)1+2+3+……+100=
(2)1+3+5+……+2n-1=
(3)1+2+4+……+2《數(shù)列求和》教學(xué)設(shè)計(jì)及反思=
(4)《數(shù)列求和》教學(xué)設(shè)計(jì)及反思=
設(shè)計(jì)意圖:
讓學(xué)生回顧舊知,由此導(dǎo)入新課。
[教師過(guò)渡]:今天我們學(xué)習(xí)《數(shù)列求和》第二課時(shí),課標(biāo)要求和學(xué)習(xí)內(nèi)容如下:(多媒體課件展示)
導(dǎo)入新課:
[情境創(chuàng)設(shè)](課件展示):
例1:求數(shù)列《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,…的前《數(shù)列求和》教學(xué)設(shè)計(jì)及反思項(xiàng)和
分析:將各項(xiàng)分母通分,顯然是行不通的,啟發(fā)學(xué)生能否通過(guò)通項(xiàng)的特點(diǎn),將每一項(xiàng)拆成兩項(xiàng)的差,使它們之間能互相抵消很多項(xiàng)。
[問(wèn)題生成]:請(qǐng)同學(xué)們觀察否是等差數(shù)列或等比數(shù)列?
設(shè)問(wèn):既然不是等差數(shù)列,也不是等比數(shù)列,那么就不能直接用等差,等比數(shù)列的求和公式,請(qǐng)同學(xué)們仔細(xì)觀察一下此數(shù)列有何特征
[教師過(guò)渡]:對(duì)于通項(xiàng)形如《數(shù)列求和》教學(xué)設(shè)計(jì)及反思(其中數(shù)列《數(shù)列求和》教學(xué)設(shè)計(jì)及反思為等差數(shù)列)求和時(shí),我們采取裂項(xiàng)相消求和方法
[特別警示] 利用裂項(xiàng)相消求和方法時(shí),抵消后并不一定只剩下第一項(xiàng)和最后一項(xiàng),也有可能前面剩兩項(xiàng),后面也剩兩項(xiàng),再就是將通項(xiàng)公式裂項(xiàng)后,有時(shí)候需要調(diào)整前面的系數(shù),才能使裂開(kāi)的兩項(xiàng)差與原通項(xiàng)公式相等.變式訓(xùn)練:
1、已知數(shù)列{ 《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }的前n項(xiàng)和為《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,若《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,設(shè)《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,求數(shù)列{ 《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }前10和《數(shù)列求和》教學(xué)設(shè)計(jì)及反思
說(shuō)明:例題引伸是教學(xué)中常做的一件事,它可以使學(xué)生的認(rèn)識(shí)得到“升華”,發(fā)展學(xué)生的思維,并起到觸類(lèi)旁通,舉一反三的效果
【小結(jié)】裂項(xiàng)的目的是為使部分項(xiàng)相互抵消.大多數(shù)裂項(xiàng)相消的通項(xiàng)均可表示為bn=《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,其中{《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }是公差d不為0的等差數(shù)列,則《數(shù)列求和》教學(xué)設(shè)計(jì)及反思《數(shù)列求和》教學(xué)設(shè)計(jì)及反思)
例2:求和:《數(shù)列求和》教學(xué)設(shè)計(jì)及反思
分析:直接算肯定不可行,啟發(fā)學(xué)生能否通過(guò)通項(xiàng)的特點(diǎn)進(jìn)行求解。
[問(wèn)題生成]:
根據(jù)以上例題,觀察該例題通項(xiàng)公式的特點(diǎn)。
[教師過(guò)渡]:如果{《數(shù)列求和》教學(xué)設(shè)計(jì)及反思}是等差數(shù)列,《數(shù)列求和》教學(xué)設(shè)計(jì)及反思是等比數(shù)列,那么求數(shù)列《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 的前n項(xiàng)和,可用錯(cuò)位相減法.《數(shù)列求和》教學(xué)設(shè)計(jì)及反思
變式訓(xùn)練2、拓展練習(xí):1、已知函數(shù)y=3x2-2x,數(shù)列{《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }的前n項(xiàng)和 為sn,點(diǎn)(n, sn)均在函數(shù)y=f(x)的圖象上。
(1)、求數(shù)列{an}的通項(xiàng)公式;
(2)、設(shè)是數(shù)列{bn=《數(shù)列求和》教學(xué)設(shè)計(jì)及反思 }的前n和《數(shù)列求和》教學(xué)設(shè)計(jì)及反思,求使得tn〈《數(shù)列求和》教學(xué)設(shè)計(jì)及反思對(duì)所有都成立的最小正整數(shù)m。
五、方法總結(jié):
公式求和:對(duì)于等差數(shù)列和等比數(shù)列的前n項(xiàng)和可直接用求和公式.拆項(xiàng)重組:利用轉(zhuǎn)化的思想,將數(shù)列拆分、重組轉(zhuǎn)化為等差或等比數(shù)列求和.裂項(xiàng)相消:對(duì)于通項(xiàng)型如《數(shù)列求和》教學(xué)設(shè)計(jì)及反思(其中數(shù)列《數(shù)列求和》教學(xué)設(shè)計(jì)及反思為等差數(shù)列)的數(shù)列,在求和時(shí)將每項(xiàng)分裂成兩項(xiàng)之差的形式,一般除首末兩項(xiàng)或附近幾項(xiàng)外,其余各項(xiàng)先后抵消,可較易求出前n項(xiàng)和。
錯(cuò)位相減:若一個(gè)數(shù)列具備有如下特征:它的各項(xiàng)恰好是由某個(gè)等差數(shù)列與某個(gè)等比數(shù)列之對(duì)應(yīng)項(xiàng)相乘所構(gòu)成的,其求和則用錯(cuò)位相減法(此法即為等比數(shù)列求和公式的推導(dǎo)方法)。
六、作業(yè)布置:
課本p49:第8題
七、教學(xué)反思
1.我從兩個(gè)方面設(shè)計(jì)變式題。其一,橫向變化,其二是縱向變化。橫向變化是:從公式→例題各個(gè)側(cè)面來(lái)看求和,讓學(xué)生開(kāi)拓了視野,展開(kāi)豐富的聯(lián)想:分組求和可分兩組,是否還有分三組來(lái)解的題?裂項(xiàng)相消法求和有分母裂項(xiàng)求和,是否還有分母有理化進(jìn)行求和等??v向變化:條件削弱,問(wèn)題復(fù)雜,難度提升。從具體到抽象,從特殊到一般螺旋式的上升。橫向變化,可看出思維變異的多樣性。這種思維變異的多樣性在今后的學(xué)習(xí)過(guò)程中將要面臨的'。如何理解這種數(shù)學(xué)的合理性呢?學(xué)生的學(xué)習(xí)的本質(zhì)是繼承、借鑒、發(fā)展、創(chuàng)新,而問(wèn)題變式教學(xué)恰是在有實(shí)例的支持下,繼承了思維變異的常用技巧,借鑒此技巧、尋求更多的變異,如分組成三個(gè)或更多個(gè)的式子求和,使學(xué)的思維得到充分的發(fā)展,從而取得創(chuàng)新的目的,這就是教學(xué)中所要取得的效果。從縱向變化,可看出思維變異的深入性。問(wèn)題的層層深入,使問(wèn)題的一般規(guī)律掀起蓋頭,讓學(xué)生體驗(yàn)了思維向縱深發(fā)展的規(guī)律。
2.反思求和公式方法的總結(jié),我也發(fā)現(xiàn)了種種遺憾.如學(xué)生的解法均缺乏根據(jù),但教師贊賞學(xué)生這種善于通過(guò)類(lèi)比聯(lián)想而發(fā)現(xiàn)的創(chuàng)造性解法,為了保護(hù)學(xué)生的積極性和創(chuàng)造性,沒(méi)有進(jìn)行否定,而是讓學(xué)生課下思考,是否妥當(dāng)?需要研究.又如裂項(xiàng)相消法等,都是由教師提出來(lái)的,若是能由學(xué)生主動(dòng)提出就更好了.為此急需加強(qiáng)對(duì)學(xué)生提出問(wèn)題的能力的訓(xùn)練和培養(yǎng),3.利用課堂教學(xué)的機(jī)會(huì),有意識(shí)地將數(shù)學(xué)研究的某些思想方法滲透到教學(xué)過(guò)程中,課堂教學(xué)不能單純傳授知識(shí),應(yīng)在傳授知識(shí)的同時(shí)注重能力的培養(yǎng)、在上述思想的指導(dǎo)下,這堂課的教學(xué)過(guò)程中,每個(gè)例題都讓學(xué)生體會(huì)到通項(xiàng)化歸的思想方法。
4.提高課堂教學(xué)的實(shí)效,加快學(xué)生的思維節(jié)秦,不拖泥帶水,該說(shuō)的話(huà),要說(shuō)到點(diǎn)上,要說(shuō)透,能少說(shuō)的,就決不多說(shuō),盡量擠出時(shí)間讓學(xué)生多練。在例題講解中,以學(xué)生為主,先由學(xué)生自行解題,展開(kāi)討論及合作學(xué)習(xí),充分調(diào)動(dòng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,提高創(chuàng)新思維的能力。
等差數(shù)列教學(xué)設(shè)計(jì) 等差數(shù)列教學(xué)設(shè)計(jì)人教版篇二
教學(xué)目標(biāo)
1.明確等差數(shù)列的定義.
2.掌握等差數(shù)列的通項(xiàng)公式,會(huì)解決知道中的三個(gè),求另外一個(gè)的問(wèn)題
3.培養(yǎng)學(xué)生觀察、歸納能力.
教學(xué)重點(diǎn)
1.等差數(shù)列的概念;
2.等差數(shù)列的通項(xiàng)公式
教學(xué)難點(diǎn)
等差數(shù)列“等差”特點(diǎn)的理解、把握和應(yīng)用
教學(xué)方法
啟發(fā)式數(shù)學(xué)
教具準(zhǔn)備
投影片1張(內(nèi)容見(jiàn)下面)
教學(xué)過(guò)程
(i)復(fù)習(xí)回顧
師:上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法――通項(xiàng)公式和遞推公式。這兩個(gè)公式從不同的角度反映數(shù)列的特點(diǎn),下面看一些例子。(放投影片)
(ⅱ)講授新課
師:看這些數(shù)列有什么共同的特點(diǎn)?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
③生:積極思考,找上述數(shù)列共同特點(diǎn)。
對(duì)于數(shù)列①(1≤n≤6);(2≤n≤6)
對(duì)于數(shù)列②
-2n(n≥1)
(n≥2)
對(duì)于數(shù)列③(n≥1)
(n≥2)
共同特點(diǎn):從第2項(xiàng)起,第一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)。
師:也就是說(shuō),這些數(shù)列均具有相鄰兩項(xiàng)之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數(shù)列,我們把它叫做等差數(shù)。
一、定義:
等差數(shù)列:一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與空的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。
如:上述3個(gè)數(shù)列都是等差數(shù)列,它們的公差依次是1,-2。
二、等差數(shù)列的通項(xiàng)公式
師:等差數(shù)列定義是由一數(shù)列相鄰兩項(xiàng)之間關(guān)系而得。若一等差數(shù)列的首項(xiàng)是,公差是d,則據(jù)其定義可得:
若將這n-1個(gè)等式相加,則可得:
即:
即:
即:
由此可得:
師:看來(lái),若已知一數(shù)列為等差數(shù)列,則只要知其首項(xiàng)和公差d,便可求得其通項(xiàng)。
如數(shù)列①
(1≤n≤6)
數(shù)列②:(n≥1)
數(shù)列③:(n≥1)
由上述關(guān)系還可得:
即:
則:=
如:
三、例題講解
例1:(1)求等差數(shù)列8,5,2…的第20項(xiàng)
(2)-401是不是等差數(shù)列-5,-9,-13…的項(xiàng)?如果是,是第幾項(xiàng)?
解:(1)由
n=20,得
(2)由
得數(shù)列通項(xiàng)公式為:
由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數(shù)列的第100項(xiàng)。
(ⅲ)課堂練習(xí)
生:(口答)課本p118練習(xí)3
(書(shū)面練習(xí))課本p117練習(xí)1
師:組織學(xué)生自評(píng)練習(xí)(同桌討論)
(ⅳ)課時(shí)小結(jié)
師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。
即(n≥2)
②等差數(shù)列通項(xiàng)公式
(n≥1)
推導(dǎo)出公式:
(v)課后作業(yè)
一、課本p118習(xí)題3.21,2
二、1.預(yù)習(xí)內(nèi)容:課本p116例2―p117例4
2.預(yù)習(xí)提綱:①如何應(yīng)用等差數(shù)列的定義及通項(xiàng)公式解決一些相關(guān)問(wèn)題?
②等差數(shù)列有哪些性質(zhì)?
板書(shū)設(shè)計(jì)
課題
一、定義
1.(n≥2)
一、通項(xiàng)公式
2.公式推導(dǎo)過(guò)程
例題
等差數(shù)列教學(xué)設(shè)計(jì) 等差數(shù)列教學(xué)設(shè)計(jì)人教版篇三
等差數(shù)列教學(xué)設(shè)計(jì)
教學(xué)目標(biāo)
1。通過(guò)教與學(xué)的互動(dòng),使學(xué)生加深對(duì)等差數(shù)列通項(xiàng)公式的認(rèn)識(shí),能參與編擬一些簡(jiǎn)單的問(wèn)題,并解決這些問(wèn)題;
2。利用通項(xiàng)公式求等差數(shù)列的項(xiàng)、項(xiàng)數(shù)、公差、首項(xiàng),使學(xué)生進(jìn)一步體會(huì)方程思想;
3。通過(guò)參與編題解題,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點(diǎn),難點(diǎn)
教學(xué)重點(diǎn)是通項(xiàng)公式的認(rèn)識(shí);教學(xué)難點(diǎn)是對(duì)公式的靈活運(yùn)用.
教學(xué)用具
實(shí)物投影儀,多媒體軟件,電腦。
教學(xué)方法
研探式。
教學(xué)過(guò)程
一。復(fù)習(xí)提問(wèn)
前一節(jié)課我們學(xué)習(xí)了等差數(shù)列的概念、表示法,請(qǐng)同學(xué)們回憶等差數(shù)列的定義,其表示法都有哪些?
等差數(shù)列的概念是從相鄰兩項(xiàng)的關(guān)系加以定義的,這個(gè)關(guān)系用遞推公式來(lái)表示比較簡(jiǎn)單,但我們要圍繞通項(xiàng)公式作進(jìn)一步的理解與應(yīng)用。
二。主體設(shè)計(jì)
通項(xiàng)公式 反映了項(xiàng) 與項(xiàng)數(shù) 之間的函數(shù)關(guān)系,當(dāng)?shù)炔顢?shù)列的首項(xiàng)與公差確定后,數(shù)列的每一項(xiàng)便確定了,可以求指定的項(xiàng)(即已知 求)。找學(xué)生試舉一例如:“已知等差數(shù)列 中,首項(xiàng),公差,求?!边@是通項(xiàng)公式的簡(jiǎn)單應(yīng)用,由學(xué)生解答后,要求每個(gè)學(xué)生出一些運(yùn)用等差數(shù)列通項(xiàng)公式的題目,包括正用、反用與變用,簡(jiǎn)單、復(fù)雜,定量、定性的均可,教師巡視將好題搜集起來(lái),分類(lèi)投影在屏幕上。
1。方程思想的運(yùn)用
(1)已知等差數(shù)列 中,首項(xiàng),公差,則-397是該數(shù)列的第______項(xiàng)。
(2)已知等差數(shù)列 中,首項(xiàng),則公差
(3)已知等差數(shù)列 中,公差,則首項(xiàng)
這一類(lèi)問(wèn)題先由學(xué)生解決,之后教師點(diǎn)評(píng),四個(gè)量,在一個(gè)等式中,運(yùn)用方程的思想方法,已知其中三個(gè)量的值,可以求得第四個(gè)量。
2?;玖糠椒ǖ氖褂?/p>
(1)已知等差數(shù)列 中,求 的.值。
(2)已知等差數(shù)列 中,求。
若學(xué)生的題目只有這兩種類(lèi)型,教師可以小結(jié)(最好請(qǐng)出題者、解題者概括):因?yàn)橐阎獥l件可以化為關(guān)于 和 的二元方程組,所以這些等差數(shù)列是確定的,由 和 寫(xiě)出通項(xiàng)公式,便可歸結(jié)為前一類(lèi)問(wèn)題。解決這類(lèi)問(wèn)題只需把兩個(gè)條件(等式)化為關(guān)于 和 的二元方程組,以求得 和,和 稱(chēng)作基本量。
教師提出新的問(wèn)題,已知等差數(shù)列的一個(gè)條件(等式),能否確定一個(gè)等差數(shù)列?學(xué)生回答后,教師再啟發(fā),由這一個(gè)條件可得到關(guān)于 和 的二元方程,這是一個(gè) 和 的制約關(guān)系,從這個(gè)關(guān)系可以得到什么結(jié)論?舉例說(shuō)明(例題可由學(xué)生或教師給出,視具體情況而定)。
如:已知等差數(shù)列 中,…
由條件可得 即,可知,這是比較顯然的,與之相關(guān)的還能有什么結(jié)論?若學(xué)生答不出可提示,一定得某一項(xiàng)的值么?能否與兩項(xiàng)有關(guān)?多項(xiàng)有關(guān)?由學(xué)生發(fā)現(xiàn)規(guī)律,完善問(wèn)題
(3)已知等差數(shù)列 中,求 ; ; ; ;…。
類(lèi)似的還有
(4)已知等差數(shù)列 中,求 的值。
以上屬于對(duì)數(shù)列的項(xiàng)進(jìn)行定量的研究,有無(wú)定性的判斷?引出
3。研究等差數(shù)列的單調(diào)性,考察 隨項(xiàng)數(shù) 的變化規(guī)律。著重考慮 的情況。此時(shí) 是 的一次函數(shù),其單調(diào)性取決于 的符號(hào),由學(xué)生敘述結(jié)果。這個(gè)結(jié)果與考察相鄰兩項(xiàng)的差所得結(jié)果是一致的。
4。研究項(xiàng)的符號(hào)
這是為研究等差數(shù)列前 項(xiàng)和的最值所做的準(zhǔn)備工作??膳鋫涞念}目如
(1)已知數(shù)列 的通項(xiàng)公式為,問(wèn)數(shù)列從第幾項(xiàng)開(kāi)始小于0?
(2)等差數(shù)列 從第________項(xiàng)起以后每項(xiàng)均為負(fù)數(shù)。
三。小結(jié)
1。用方程思想認(rèn)識(shí)等差數(shù)列通項(xiàng)公式;
2。用函數(shù)思想解決等差數(shù)列問(wèn)題。
四。板書(shū)設(shè)計(jì)
等差數(shù)列通項(xiàng)公式
1。方程思想的運(yùn)用
2?;玖糠椒ǖ氖褂?/p>
3。研究等差數(shù)列的單調(diào)性
4。研究項(xiàng)的符號(hào)